山東省青島六校聯(lián)考2024年中考沖刺卷數(shù)學試題含解析_第1頁
山東省青島六校聯(lián)考2024年中考沖刺卷數(shù)學試題含解析_第2頁
山東省青島六校聯(lián)考2024年中考沖刺卷數(shù)學試題含解析_第3頁
山東省青島六校聯(lián)考2024年中考沖刺卷數(shù)學試題含解析_第4頁
山東省青島六校聯(lián)考2024年中考沖刺卷數(shù)學試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

山東省青島六校聯(lián)考2024年中考沖刺卷數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.哥哥與弟弟的年齡和是18歲,弟弟對哥哥說:“當我的年齡是你現(xiàn)在年齡的時候,你就是18歲”.如果現(xiàn)在弟弟的年齡是x歲,哥哥的年齡是y歲,下列方程組正確的是()A.x=y-18y-x=18-yB.C.x+y=18y-x=18+yD.2.6的相反數(shù)為A.-6 B.6 C. D.3.某市2017年國內(nèi)生產(chǎn)總值(GDP)比2016年增長了12%,由于受到國際金融危機的影響,預計2018比2017年增長7%,若這兩年GDP年平均增長率為%,則%滿足的關(guān)系是()A. B.C. D.4.如圖,△ABC中,DE垂直平分AC交AB于E,∠A=30°,∠ACB=80°,則∠BCE等于()A.40° B.70° C.60° D.50°5.關(guān)于x的一元二次方程x2﹣2x+k+2=0有實數(shù)根,則k的取值范圍在數(shù)軸上表示正確的是()A. B.C. D.6.下列四個圖案中,不是軸對稱圖案的是()A. B. C. D.7.已知3x+y=6,則xy的最大值為()A.2 B.3 C.4 D.68.據(jù)媒體報道,我國最新研制的“察打一體”無人機的速度極快,經(jīng)測試最高速度可達204000米/分,這個數(shù)用科學記數(shù)法表示,正確的是()A.204×103B.20.4×104C.2.04×105D.2.04×1069.下列計算正確的是()A.()2=±8 B.+=6 C.(﹣)0=0 D.(x﹣2y)﹣3=10.一元一次不等式2(1+x)>1+3x的解集在數(shù)軸上表示為()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,已知△ABC和△ADE均為等邊三角形,點OAC的中點,點D在A射線BO上,連接OE,EC,若AB=4,則OE的最小值為_____.12.一個布袋中裝有1個藍色球和2個紅色球,這些球除顏色外其余都相同,隨機摸出一個球后放回搖勻,再隨機摸出一個球,則兩次摸出的球都是紅球的概率是_____.13.若關(guān)于x的一元二次方程kx2+2(k+1)x+k-1=0有兩個實數(shù)根,則k的取值范圍是14.如圖,以長為18的線段AB為直徑的⊙O交△ABC的邊BC于點D,點E在AC上,直線DE與⊙O相切于點D.已知∠CDE=20°,則的長為_____.15.如圖,在?ABCD中,E在AB上,CE、BD交于F,若AE:BE=4:3,且BF=2,則DF=_____16.如圖,四邊形ABCD是菱形,☉O經(jīng)過點A,C,D,與BC相交于點E,連接AC,AE,若∠D=78°,則∠EAC=________°.17.計算(﹣a)3?a2的結(jié)果等于_____.三、解答題(共7小題,滿分69分)18.(10分)已知如圖①Rt△ABC和Rt△EDC中,∠ACB=∠ECD=90°,A,C,D在同一條直線上,點M,N,F分別為AB,ED,AD的中點,∠B=∠EDC=45°,(1)求證MF=NF(2)當∠B=∠EDC=30°,A,C,D在同一條直線上或不在同一條直線上,如圖②,圖③這兩種情況時,請猜想線段MF,NF之間的數(shù)量關(guān)系.(不必證明)19.(5分)解方程(1);(2)20.(8分)如圖,將平行四邊形ABCD紙片沿EF折疊,使點C與點A重合,點D落在點G處.(1)連接CF,求證:四邊形AECF是菱形;(2)若E為BC中點,BC=26,tan∠B=,求EF的長.21.(10分)如圖,拋物線經(jīng)過點A(﹣2,0),點B(0,4).(1)求這條拋物線的表達式;(2)P是拋物線對稱軸上的點,聯(lián)結(jié)AB、PB,如果∠PBO=∠BAO,求點P的坐標;(3)將拋物線沿y軸向下平移m個單位,所得新拋物線與y軸交于點D,過點D作DE∥x軸交新拋物線于點E,射線EO交新拋物線于點F,如果EO=2OF,求m的值.22.(10分)計算:(﹣2)﹣2﹣sin45°+(﹣1)2018﹣÷223.(12分)在一個不透明的布袋中裝兩個紅球和一個白球,這些球除顏色外均相同(1)攪勻后從袋中任意摸出1個球,摸出紅球的概率是.(2)甲、乙、丙三人依次從袋中摸出一個球,記錄顏色后不放回,試求出乙摸到白球的概率24.(14分)如圖①,有兩個形狀完全相同的直角三角形ABC和EFG疊放在一起(點A與點E重合),已知AC=8cm,BC=6cm,∠C=90°,EG=4cm,∠EGF=90°,O是△EFG斜邊上的中點.

如圖②,若整個△EFG從圖①的位置出發(fā),以1cm/s的速度沿射線AB方向平移,在△EFG平移的同時,點P從△EFG的頂點G出發(fā),以1cm/s的速度在直角邊GF上向點F運動,當點P到達點F時,點P停止運動,△EFG也隨之停止平移.設運動時間為x(s),F(xiàn)G的延長線交AC于H,四邊形OAHP的面積為y(cm2)(不考慮點P與G、F重合的情況).

(1)當x為何值時,OP∥AC;

(2)求y與x之間的函數(shù)關(guān)系式,并確定自變量x的取值范圍;

(3)是否存在某一時刻,使四邊形OAHP面積與△ABC面積的比為13:24?若存在,求出x的值;若不存在,說明理由.(參考數(shù)據(jù):1142=12996,1152=13225,1162=13456或4.42=19.36,4.52=20.25,4.62=21.16)

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】試題解析:設現(xiàn)在弟弟的年齡是x歲,哥哥的年齡是y歲,由題意得y=18-x18-y=y-x故選D.考點:由實際問題抽象出二元一次方程組2、A【解析】

根據(jù)相反數(shù)的定義進行求解.【詳解】1的相反數(shù)為:﹣1.故選A.【點睛】本題主要考查相反數(shù)的定義,熟練掌握相反數(shù)的定義是解答的關(guān)鍵,絕對值相等,符號相反的兩個數(shù)互為相反數(shù).3、D【解析】分析:根據(jù)增長率為12%,7%,可表示出2017年的國內(nèi)生產(chǎn)總值,2018年的國內(nèi)生產(chǎn)總值;求2年的增長率,可用2016年的國內(nèi)生產(chǎn)總值表示出2018年的國內(nèi)生產(chǎn)總值,讓2018年的國內(nèi)生產(chǎn)總值相等即可求得所列方程.詳解:設2016年的國內(nèi)生產(chǎn)總值為1,∵2017年國內(nèi)生產(chǎn)總值(GDP)比2016年增長了12%,∴2017年的國內(nèi)生產(chǎn)總值為1+12%;∵2018年比2017年增長7%,∴2018年的國內(nèi)生產(chǎn)總值為(1+12%)(1+7%),∵這兩年GDP年平均增長率為x%,∴2018年的國內(nèi)生產(chǎn)總值也可表示為:,∴可列方程為:(1+12%)(1+7%)=.故選D.點睛:考查了由實際問題列一元二次方程的知識,當必須的量沒有時,應設其為1;注意2018年的國內(nèi)生產(chǎn)總值是在2017年的國內(nèi)生產(chǎn)總值的基礎上增加的,需先算出2016年的國內(nèi)生產(chǎn)總值.4、D【解析】

根據(jù)線段垂直平分線性質(zhì)得出AE=CE,推出∠A=∠ACE=30°,代入∠BCE=∠ACB-∠ACE求出即可.【詳解】∵DE垂直平分AC交AB于E,∴AE=CE,∴∠A=∠ACE,∵∠A=30°,∴∠ACE=30°,∵∠ACB=80°,∴∠BCE=∠ACB-∠ACE=50°,故選D.【點睛】本題考查了等腰三角形的性質(zhì),線段垂直平分線性質(zhì)的應用,注意:線段垂直平分線上的點到線段兩個端點的距離相等.5、C【解析】

由一元二次方程有實數(shù)根可知△≥0,即可得出關(guān)于k的一元一次不等式,解之即可得出k的取值范圍.【詳解】∵關(guān)于x的一元二次方程x2?2x+k+2=0有實數(shù)根,∴△=(?2)2?4(k+2)?0,解得:k??1,在數(shù)軸上表示為:故選C.【點睛】本題考查了一元二次方程根的判別式.根據(jù)一元二次方程根的情況利用根的判別式列出不等式是解題的關(guān)鍵.6、B【解析】

根據(jù)軸對稱圖形的定義逐項識別即可,一個圖形的一部分,以某條直線為對稱軸,經(jīng)過軸對稱能與圖形的另一部分重合,這樣的圖形叫做軸對稱圖形.【詳解】A、是軸對稱圖形,故本選項錯誤;B、不是軸對稱圖形,故本選項正確;C、是軸對稱圖形,故本選項錯誤;D、是軸對稱圖形,故本選項錯誤.故選:B.【點睛】本題考查了軸對稱圖形的識別,熟練掌握軸對稱圖形的定義是解答本題的關(guān)鍵.7、B【解析】

根據(jù)已知方程得到y(tǒng)=-1x+6,將其代入所求的代數(shù)式后得到:xy=-1x2+6x,利用配方法求該式的最值.【詳解】解:∵1x+y=6,∴y=-1x+6,∴xy=-1x2+6x=-1(x-1)2+1.∵(x-1)2≥0,∴-1(x-1)2+1≤1,即xy的最大值為1.故選B.【點睛】考查了二次函數(shù)的最值,解題時,利用配方法和非負數(shù)的性質(zhì)求得xy的最大值.8、C【解析】試題分析:204000米/分,這個數(shù)用科學記數(shù)法表示2.04×105,故選C.考點:科學記數(shù)法—表示較大的數(shù).9、D【解析】

各項中每項計算得到結(jié)果,即可作出判斷.【詳解】解:A.原式=8,錯誤;B.原式=2+4,錯誤;C.原式=1,錯誤;D.原式=x6y﹣3=,正確.故選D.【點睛】此題考查了實數(shù)的運算,熟練掌握運算法則是解本題的關(guān)鍵.10、B【解析】

按照解一元一次不等式的步驟求解即可.【詳解】去括號,得2+2x>1+3x;移項合并同類項,得x<1,所以選B.【點睛】數(shù)形結(jié)合思想是初中常用的方法之一.二、填空題(共7小題,每小題3分,滿分21分)11、1【解析】

根據(jù)等邊三角形的性質(zhì)可得OC=AC,∠ABD=30°,根據(jù)“SAS”可證△ABD≌△ACE,可得∠ACE=30°=∠ABD,當OE⊥EC時,OE的長度最小,根據(jù)直角三角形的性質(zhì)可求OE的最小值.【詳解】解:∵△ABC的等邊三角形,點O是AC的中點,∴OC=AC,∠ABD=30°∵△ABC和△ADE均為等邊三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAD=∠CAE,且AB=AC,AD=AE,∴△ABD≌△ACE(SAS)∴∠ACE=30°=∠ABD當OE⊥EC時,OE的長度最小,∵∠OEC=90°,∠ACE=30°∴OE最小值=OC=AB=1,故答案為1【點睛】本題考查了全等三角形的判定和性質(zhì),等邊三角形的性質(zhì),熟練運用全等三角形的判定是本題的關(guān)鍵.12、【解析】

首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與兩次摸出的球都是紅球的情況,再利用概率公式即可求出答案.【詳解】畫樹狀圖得:∵共有9種等可能的結(jié)果,兩次摸出的球都是紅球的由4種情況,∴兩次摸出的球都是紅球的概率是,故答案為.【點睛】本題主要考查了求隨機事件概率的方法,解本題的要點在于根據(jù)題意畫出樹狀圖,從而求出答案.13、k≥-1【解析】試題解析:∵a=k,b=2(k+1),c=k-1,∴△=4(k+1)2-4×k×(k-1)=3k+1≥1,解得:k≥-13∵原方程是一元二次方程,∴k≠1.考點:根的判別式.14、7π【解析】

連接OD,由切線的性質(zhì)和已知條件可求出∠AOD的度數(shù),再根據(jù)弧長公式即可求出的長.【詳解】連接OD,∵直線DE與⊙O相切于點D,∴∠EDO=90°,∵∠CDE=20°,∴∠ODB=180°-90°-20°=70°,∵OD=OB,∴∠ODB=∠OBD=70°,∴∠AOD=140°,∴的長==7π,故答案為:7π.【點睛】本題考查了切線的性質(zhì)、等腰三角形的判斷和性質(zhì)以及弧長公式的運用,求出∠AOD的度數(shù)是解題的關(guān)鍵.15、.【解析】

解:令AE=4x,BE=3x,∴AB=7x.∵四邊形ABCD為平行四邊形,∴CD=AB=7x,CD∥AB,∴△BEF∽△DCF.∴,∴DF=【點睛】本題考查平行四邊形的性質(zhì)及相似三角形的判定與性質(zhì),掌握定理正確推理論證是本題的解題關(guān)鍵.16、1.【解析】

解:∵四邊形ABCD是菱形,∠D=78°,∴∠ACB=(180°-∠D)=51°,又∵四邊形AECD是圓內(nèi)接四邊形,∴∠AEB=∠D=78°,∴∠EAC=∠AEB-∠ACB=1°.故答案為:1°17、﹣a5【解析】

根據(jù)冪的乘方和積的乘方運算法則計算即可.【詳解】解:(-a)3?a2=-a3?a2=-a3+2=-a5.故答案為:-a5.【點睛】本題考查了冪的乘方和積的乘方運算.三、解答題(共7小題,滿分69分)18、(1)見解析;(2)MF=NF.【解析】

(1)連接AE,BD,先證明△ACE和△BCD全等,然后得到AE=BD,然后再通過三角形中位線證明即可.(2)根據(jù)圖(2)(3)進行合理猜想即可.【詳解】解:(1)連接AE,BD在△ACE和△BCD中∴△ACE≌△BCD∴AE=BD又∵點M,N,F分別為AB,ED,AD的中點∴MF=BD,NF=AE∴MF=NF(2)MF=NF.方法同上.【點睛】本題考查了三角形全等的判定和性質(zhì)以及三角形中位線的知識,做出輔助線和合理猜想是解答本題的關(guān)鍵.19、(1),;(2),.【解析】

(1)利用公式法求解可得;(2)利用因式分解法求解可得.【詳解】(1)解:∵,,,∴,∴,∴,;(2)解:原方程化為:,因式分解得:,整理得:,∴或,∴,.【點睛】本題主要考查解一元二次方程的能力,熟練掌握解一元二次方程的幾種常用方法:直接開平方法、因式分解法、公式法、配方法,結(jié)合方程的特點選擇合適、簡便的方法是解題的關(guān)鍵.20、(1)證明見解析;(2)EF=1.【解析】

(1)如圖1,利用折疊性質(zhì)得EA=EC,∠1=∠2,再證明∠1=∠3得到AE=AF,則可判斷四邊形AECF為平行四邊形,從而得到四邊形AECF為菱形;(2)作EH⊥AB于H,如圖,利用四邊形AECF為菱形得到AE=AF=CE=13,則判斷四邊形ABEF為平行四邊形得到EF=AB,根據(jù)等腰三角形的性質(zhì)得AH=BH,再在Rt△BEH中利用tanB==可計算出BH=5,從而得到EF=AB=2BH=1.【詳解】(1)證明:如圖1,∵平行四邊形ABCD紙片沿EF折疊,使點C與點A重合,點D落在點G處,∴EA=EC,∠1=∠2,∵四邊形ABCD為平行四邊形,∴AD∥BC,∴∠2=∠3,∴∠1=∠3,∴AE=AF,∴AF=CE,而AF∥CE,∴四邊形AECF為平行四邊形,∵EA=EC,∴四邊形AECF為菱形;(2)解:作EH⊥AB于H,如圖,∵E為BC中點,BC=26,∴BE=EC=13,∵四邊形AECF為菱形,∴AE=AF=CE=13,∴AF=BE,∴四邊形ABEF為平行四邊形,∴EF=AB,∵EA=EB,EH⊥AB,∴AH=BH,在Rt△BEH中,tanB==,設EH=12x,BH=5x,則BE=13x,∴13x=13,解得x=1,∴BH=5,∴AB=2BH=1,∴EF=1.【點睛】本題考查了折疊的性質(zhì):折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等.也考查了平行四邊形的性質(zhì)、菱形的判定與性質(zhì).21、(1);(2)P(1,);(3)3或5.【解析】

(1)將點A、B代入拋物線,用待定系數(shù)法求出解析式.(2)對稱軸為直線x=1,過點P作PG⊥y軸,垂足為G,由∠PBO=∠BAO,得tan∠PBO=tan∠BAO,即,可求出P的坐標.(3)新拋物線的表達式為,由題意可得DE=2,過點F作FH⊥y軸,垂足為H,∵DE∥FH,EO=2OF,∴,∴FH=1.然后分情況討論點D在y軸的正半軸上和在y軸的負半軸上,可求得m的值為3或5.【詳解】解:(1)∵拋物線經(jīng)過點A(﹣2,0),點B(0,4)∴,解得,∴拋物線解析式為,(2),∴對稱軸為直線x=1,過點P作PG⊥y軸,垂足為G,∵∠PBO=∠BAO,∴tan∠PBO=tan∠BAO,∴,∴,∴,,∴P(1,),(3)設新拋物線的表達式為則,,DE=2過點F作FH⊥y軸,垂足為H,∵DE∥FH,EO=2OF∴,∴FH=1.點D在y軸的正半軸上,則,∴,∴,∴m=3,點D在y軸的負半軸上,則,∴,∴,∴m=5,∴綜上所述m的值為3或5.【點睛】本題是二次函數(shù)和相似三角形的綜合題目,整體難度不大,但是非常巧妙,學會靈活運用是關(guān)鍵.22、【解析】

按照實數(shù)的運算順序進行運算即可.【詳解】解:原式【點睛】本題考查實數(shù)的運算,主要考查零次冪,負整數(shù)指數(shù)冪,特殊角的三角函數(shù)值以及立方根,熟練掌握各個知識點是解題的關(guān)鍵.23、(1);(2).【解析】

(1)直接利用概率公式求解;

(2)畫樹狀圖展示所有6種等可能的結(jié)果數(shù),再找出乙摸到白球的結(jié)果數(shù),然后根據(jù)概率公式求解.【詳解】解:(1)攪勻后從袋中任意摸出1個球,摸出紅球的概率是;

故答案為:;

(2)畫樹狀圖為:

共有6種等可能的結(jié)果數(shù),其中乙摸到白球的結(jié)果數(shù)為2,

所以乙摸到白球的概率==.【點睛】本題考查列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式求事件A或B的概率.24、(1)1.5s;(2)S=x2+x+3(0<x<3);(3)當x=(s)時,四邊形OAHP面積與△ABC面積的比為13:1.【解析】

(1)由于O是EF中點,因此

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論