2025屆上海市嘉定、長寧區(qū)數學高二上期末監(jiān)測模擬試題含解析_第1頁
2025屆上海市嘉定、長寧區(qū)數學高二上期末監(jiān)測模擬試題含解析_第2頁
2025屆上海市嘉定、長寧區(qū)數學高二上期末監(jiān)測模擬試題含解析_第3頁
2025屆上海市嘉定、長寧區(qū)數學高二上期末監(jiān)測模擬試題含解析_第4頁
2025屆上海市嘉定、長寧區(qū)數學高二上期末監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆上海市嘉定、長寧區(qū)數學高二上期末監(jiān)測模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某中學的校友會為感謝學校的教育之恩,準備在學校修建一座四角攢尖的思源亭如圖它的上半部分的輪廓可近似看作一個正四棱錐,已知此正四棱錐的側面與底面所成的二面角為30°,側棱長為米,則以下說法不正確()A.底面邊長為6米 B.體積為立方米C.側面積為平方米 D.側棱與底面所成角的正弦值為2.已知a、b是兩條不同的直線,α、β、γ是三個不同的平面,則下列命題正確的是()A.若a∥α,a∥b,則b∥α B.若a∥α,a∥β,則α∥βC.若α⊥γ,β⊥γ,則α∥β D.若a⊥α,b⊥α,則a∥b3.若,,則下列各式中正確的是()A. B.C. D.4.下列直線中,傾斜角為45°的是()A. B.C. D.5.化學中,將構成粒子(原子、離子或分子)在空間按一定規(guī)律呈周期性重復排列構成的固體物質稱為晶體.在結構化學中,可將晶體結構截分為一個個包含等同內容的基本單位,這個基本單位叫做晶胞.已知鈣、鈦、氧可以形成如圖所示的立方體晶胞(其中Ti原子位于晶胞的中心,Ca原子均在頂點位置,O原子位于棱的中點).則圖中原子連線BF與所成角的余弦值為()A. B.C. D.6.(2017新課標全國卷Ⅲ文科)已知橢圓C:的左、右頂點分別為A1,A2,且以線段A1A2為直徑的圓與直線相切,則C的離心率為A. B.C. D.7.下列命題中,結論為真命題的組合是()①“”是“直線與直線相互垂直”的充分而不必要條件②若命題“”為假命題,則命題一定是假命題③是的必要不充分條件④雙曲線被點平分的弦所在的直線方程為⑤已知過點的直線與圓的交點個數有2個.A.①③④ B.②③④C.①③⑤ D.①②⑤8.下面四個條件中,使成立的充分而不必要的條件是A. B.C. D.9.已知等比數列各項均為正數,且,,成等差數列,則()A. B.C. D.10.已知集合,則()A. B.C. D.11.雙曲線的離心率為,則其漸近線方程為A. B.C. D.12.在下列函數中,最小值為2的是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.各項均為正數的等比數列的前n項和為,滿足,,則___________.14.已知A,B為x,y正半軸上的動點,且,O為坐標原點,現以為邊長在第一象限做正方形,則的最大值為___________.15.圓錐的軸截面是邊長為2的等邊三角形,為底面中心,為的中點,動點在圓錐底面內(包括圓周).若,則點形成的軌跡的長度為______16.已知圓:,圓:,則圓與圓的位置關系是______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(1)當時,求的單調區(qū)間;(2)當時,證明:存在最大值,且恒成立.18.(12分)如圖,矩形和菱形所在的平面相互垂直,,為的中點.(1)求證:平面;(2)若,求二面角的余弦值.19.(12分)已知函數的兩個極值點之差的絕對值為.(1)求的值;(2)若過原點的直線與曲線在點處相切,求點的坐標.20.(12分)已知橢圓經過點,橢圓E的一個焦點為(1)求橢圓E的方程;(2)若直線l過點且與橢圓E交于A,B兩點.求的最大值21.(12分)已知點,點B為直線上的動點,過B作直線的垂線,線段AB的中垂線與交于點P(1)求點P的軌跡C的方程;(2)若過點的直線l與曲線C交于M,N兩點,求面積的最小值.(O為坐標原點)22.(10分)四棱錐,底面為矩形,面,且,點在線段上,且面.(1)求線段的長;(2)對于(1)中的,求直線與面所成角的正弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】連接底面正方形的對角線交于點,連接,則為該正四棱錐的高,即平面,取的中點,連接,則的大小為側面與底面所成,設正方形的邊長為,求出該正四棱錐的底面邊長,斜高和高,然后對選項進行逐一判斷即可.【詳解】連接底面正方形的對角線交于點,連接則為該正四棱錐的高,即平面取的中點,連接,由正四棱錐的性質,可得由分別為的中點,所以,則所以為二面角的平面角,由條件可得設正方形的邊長為,則,又則,解得故選項A正確.所以,則該正四棱錐的體積為,故選項B正確.該正四棱錐的側面積為,故選項C正確.由題意為側棱與底面所成角,則,故選項D不正確.故選:D2、D【解析】根據空間線、面的位置關系有關定理,對四個選項逐一分析排除,由此得出正確選項.【詳解】對于A選項,直線有可能平面內,故A選項錯誤.對于B選項,兩個平面有可能相交,平行于它們的交線,故B選項錯誤.對于C選項,可能相交,故C選項錯誤.根據線面垂直的性質定理可知D選項正確.故選:D.3、D【解析】根據題意,結合,,利用不等式的性質可判斷,從而判斷,再利用不等式性質得出正確答案.【詳解】,,,又,,兩邊同乘以負數,可知故選:D4、C【解析】由直線傾斜角得出直線斜率,再由直線方程求出直線斜率,即可求解.【詳解】由直線傾斜角為45°,可知直線的斜率為,對于A,直線斜率為,對于B,直線無斜率,對于C,直線斜率,對于D,直線斜率,故選:C5、C【解析】如圖所示,以為坐標原點,所在的直線分別為軸,建立直角坐標系,設立方體的棱長為,求出的值,即可得到答案;【詳解】如圖所示,以為坐標原點,所在的直線分別為軸,建立直角坐標系,設立方體的棱長為,則,,,,連線與所成角的余弦值為故選:C.6、A【解析】以線段為直徑的圓的圓心為坐標原點,半徑為,圓的方程為,直線與圓相切,所以圓心到直線的距離等于半徑,即,整理可得,即即,從而,則橢圓的離心率,故選A.【名師點睛】解決橢圓和雙曲線的離心率的求值及取值范圍問題,其關鍵就是確立一個關于的方程或不等式,再根據的關系消掉得到的關系式,而建立關于的方程或不等式,要充分利用橢圓和雙曲線的幾何性質、點的坐標的范圍等.7、C【解析】求出兩直線垂直時m值判斷①;由復合命題真值表可判斷②;化簡不等式結合充分條件、必要條件定義判斷③;聯立直線與雙曲線的方程組成的方程組驗證判斷④;判定點與圓的位置關系判斷⑤作答.【詳解】若直線與直線相互垂直,則,解得或,則“”是“直線與直線相互垂直”的充分而不必要條件,①正確;命題“”為假命題,則與至少一個是假命題,不能推出一定是假命題,②不正確;,,則是的必要不充分條件,③正確;由消去y并整理得:,,即直線與雙曲線沒有公共點,④不正確;點在圓上,則直線與圓至少有一個公共點,而過點與圓相切的直線為,直線不包含,因此,直線與圓相交,有兩個交點,⑤正確,所以所有真命題的序號是①③⑤.故選:C8、A【解析】由,但無法得出,A滿足;由、均無法得出,不滿足“充分”;由,不滿足“不必要”.考點:不等式性質、充分必要性.9、A【解析】結合等差數列的性質求得公比,然后由等比數列的性質得結論【詳解】設的公比為,因為,,成等差數列,所以,即,,或(舍去,因為數列各項為正)所以故選:A10、D【解析】由集合的關系及交集運算,逐項判斷即可得解.【詳解】因為集合,,所以,,.故選:D.【點睛】本題考查了集合關系的判斷及集合的交集運算,考查了運算求解能力,屬于基礎題.11、A【解析】分析:根據離心率得a,c關系,進而得a,b關系,再根據雙曲線方程求漸近線方程,得結果.詳解:因為漸近線方程為,所以漸近線方程為,選A.點睛:已知雙曲線方程求漸近線方程:.12、C【解析】結合基本不等式的知識對選項逐一分析,由此確定正確選項.【詳解】對于A選項,時,為負數,A錯誤.對于B選項,,,,但不存在使成立,所以B錯誤.對于C選項,,當且僅當時等號成立,C正確.對于D選項,,,,但不存在使成立,所以D錯誤.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用等比數列的通項公式和前項和公式,即可得到答案.【詳解】由題意各項均為正數的等比數列得:,故答案為:14、32【解析】建立平面直角坐標系,設出角度和邊長,表達出點坐標,進而表達出,利用三角函數換元,求出最大值.【詳解】如圖,過點D作DE⊥x軸于點E,過點C作CF⊥y軸于點F,設,(),則由三角形全等可知,設,,則,則,,則,令,,則,當時,取得最大值,最大值為32故答案為:3215、【解析】建立空間直角坐標系設,,,,于是,,因為,所以,從而,,此為點形成的軌跡方程,其在底面圓盤內的長度為16、相交【解析】把兩個圓的方程化為標準方程,分別找出兩圓的圓心坐標和半徑,利用兩點間的距離公式求出兩圓心的距離,與半徑和與差的關系比較即可知兩圓位置關系.【詳解】化為,化為,則兩圓圓心分別為:,,半徑分別為:,圓心距為,,所以兩圓相交.故答案為:相交.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)的單增區(qū)間為,;單減區(qū)間為,,;(2)證明見解析.【解析】(1)先求出函數的定義域,求出,由,結合函數的定義域可得出函數的單調區(qū)間.(2)當時,定義域R,求出,從而得出單調區(qū)間,由當時,,當時,,以及極值點與2的大小關系可得出當時,函數有最大值,然后再證明即可.【詳解】解:(1)定義域,可得且且,,可得且3無0無0減無減增無增減所以,的單增區(qū)間為,;單減區(qū)間為,,.(2)當時,定義域R因為,當時,,當時,,所以的最大值在時取得;由,即,得由,得,或由,得所以在上單調遞減,在上單調遞增,在上單調遞減.當時,,且,由所以當時,函數有最大值.所以,因為,所以,設,則所以化為由,則,則,所以所以18、(1)證明見解析;(2).【解析】(1)利用面面垂直和線面垂直的性質定理可證得;由菱形邊長和角度的關系可證得;利用線面垂直的判定定理可證得結論;(2)以為坐標原點建立起空間直角坐標系,利用空間向量法可求得二面角的余弦值.詳解】(1)平面平面,平面平面,且平面,平面,平面,,四邊形為菱形且為中點,,又,,又,,平面,,平面.(2)以為坐標原點可建立如下圖所示的空間直角坐標系,設,則,,,,,,則,,,設平面的法向量,則,令,則,,,設平面的法向量,則,令,則,,,,二面角為鈍二面角,二面角的余弦值為.【點睛】本題考查立體幾何中線面垂直關系的證明、空間向量法求解二面角的問題;涉及到面面垂直的性質定理、線面垂直的判定與性質定理的應用,屬于常考題型.19、(1);(2).【解析】(1)求,設的兩根分別為,,由韋達定理可得:,,由題意知,進而可得的值;再檢驗所求的的值是否符合題意即可;(2)設,則,由列關于的方程,即可求得的值,進而可得的值,即可得點的坐標.【詳解】由可得:設的兩根分別為,,則,,由題意可知:,即,所以解得:,當時,,由可得或,由可得,所以在單調遞增,在單調遞減,在單調遞增,所以為極大值點,為極小值點,滿足兩個極值點之差的絕對值為,符合題意,所以.(2)由(1)知,,設,則,由題意可得:,即,整理可得:,解得:或,因為即為坐標原點,不符合題意,所以,則,所以.20、(1);(2).【解析】(1)利用代入法,結合焦點的坐標、橢圓中的關系進行求解即可;(2)根據直線l是否存在斜率分類討論,結合一元二次方程根的判別式、根與系數關系、弦長公式、基本不等式進行求解即可.【小問1詳解】依題意:,解得,,∴橢圓E的方程為;【小問2詳解】當直線l的斜率存在時,設,,由得由得.由,得當且僅當,即時等號成立當直線l的斜率不存在時,,∴的最大值為21、(1)(2)【解析】(1)由已知可得,根據拋物線的定義可知點的軌跡是以為焦點,為準線的拋物線,即可得到軌跡方程;(2)設直線方程為,,,,,聯立直線與拋物線方程,消元、列出韋達定理,則,代入韋達定理,即可求出面積最小值;【小問1詳解】解:由已知可得,,即點到定點的距離等于到直線的距離,故點的軌跡是

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論