版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
江西省安福二中、吉安縣三中2025屆高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)區(qū)間上有()A.極大值為27,極小值為-5 B.無極大值,極小值為-5C.極大值為27,無極小值 D.無極大值,無極小值2.據(jù)記載,歐拉公式是由瑞士著名數(shù)學(xué)家歐拉發(fā)現(xiàn)的,該公式被譽(yù)為“數(shù)學(xué)中的天橋”特別是當(dāng)時,得到一個令人著迷的優(yōu)美恒等式,將數(shù)學(xué)中五個重要的數(shù)(自然對數(shù)的底,圓周率,虛數(shù)單位,自然數(shù)的單位和零元)聯(lián)系到了一起,有些數(shù)學(xué)家評價它是“最完美的數(shù)學(xué)公式”.根據(jù)歐拉公式,復(fù)數(shù)的虛部()A. B.C. D.3.拋物線的焦點到雙曲線的漸近線的距離是()A. B.C.1 D.4.平行六面體中,若,則()A. B.1C. D.5.如圖,在三棱錐中,點E在上,滿足,點F為的中點,記分別為,則()A. B.C. D.6.設(shè),分別是雙曲線:的左、右焦點,過點作的一條漸近線的垂線,垂足為,,為坐標(biāo)原點,則雙曲線的離心率為()A. B.2C. D.7.直線與圓的位置關(guān)系是()A.相交 B.相切C.相離 D.不確定8.已知是空間的一個基底,若,,若,則()A B.C.3 D.9.對于公差為1的等差數(shù)列,;公比為2的等比數(shù)列,,則下列說法不正確的是()A.B.C.數(shù)列為等差數(shù)列D.數(shù)列的前項和為10.若直線的一個方向向量為,直線的一個方向向量為,則直線與所成的角為()A30° B.45°C.60° D.90°11.已知直線過點且與直線平行,則直線方程為()A. B.C. D.12.將的展開式按x的降冪排列,第二項不大于第三項,若,且,則實數(shù)x的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若直線與直線互相垂直,則___________.14.已知點是拋物線的準(zhǔn)線與x軸的交點,F(xiàn)為拋物線的焦點,P是拋物線上的動點,則最小值為_____15.如圖的一系列正方形圖案稱為謝爾賓斯基地毯,圖案的做法是:把一個正方形分成9個全等的小正方形,對中間的一個小正方形進(jìn)行著色得到第1個圖案(圖1);在第1個圖案中對沒有著色的小正方形再重復(fù)以上做法得到第2個圖案(圖2);以此類推,每進(jìn)行一次操作,就得到一個新的正方形圖案,設(shè)原正方形的邊長為1,記第n個圖案中所有著色的正方形的面積之和為,則數(shù)列的通項公式______16.將集合且中所有的元素從小到大排列得到的數(shù)列記為,則___________(填數(shù)值).三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(1)當(dāng)時,求曲線在點(0,f(0))處的切線方程;(2)若存在,使得不等式成立,求m的取值范圍18.(12分)已知圓經(jīng)過坐標(biāo)原點和點,且圓心在軸上.(1)求圓的方程;(2)已知直線與圓相交于A、B兩點,求所得弦長的值.19.(12分)已知平面內(nèi)兩點.(1)求過點且與直線平行的直線的方程;(2)求線段的垂直平分線方程.20.(12分)如圖,在四棱錐中,已知平面ABCD,為等邊三角形,,,.(1)證明:平面PAD;(2)若M是BP的中點,求二面角的余弦值.21.(12分)如圖,在直三棱柱中,,E、F分別是、的中點(1)求證:平面;(2)求證:平面22.(10分)已知,:,:.(1)若,為真命題,為假命題,求實數(shù)的取值范圍;(2)若是的充分不必要條件,求實數(shù)的取值范圍
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】求出得出的單調(diào)區(qū)間,從而可得答案.【詳解】當(dāng)時,,單調(diào)遞減.當(dāng)時,,單調(diào)遞增.所以當(dāng)時,取得極小值,極小值為,無極大值.故選:B2、D【解析】由歐拉公式的定義和復(fù)數(shù)的概念進(jìn)行求解.【詳解】由題意,得,則復(fù)數(shù)的虛部為.故選:D.3、B【解析】先確定拋物線的焦點坐標(biāo),和雙曲線的漸近線方程,再由點到直線的距離公式即可求出結(jié)果.【詳解】因為拋物線的焦點坐標(biāo)為,雙曲線的漸近線方程為,由點到直線的距離公式可得.故選:B4、D【解析】根據(jù)空間向量的運(yùn)算,表示出,和已知比較可求得的值,進(jìn)而求得答案.【詳解】在平行六面體中,有,故由題意可知:,即,所以,故選:D.5、B【解析】利用空間向量加減、數(shù)乘的幾何意義,結(jié)合三棱錐用表示出即可.【詳解】由題設(shè),,,,.故選:B6、D【解析】先求過右焦點且與漸近線垂直的直線方程,與漸近線方程聯(lián)立求點P的坐標(biāo),再用兩點間的距離公式,結(jié)合已知條件,得到關(guān)于a,c的關(guān)系式.【詳解】雙曲線的左右焦點分別為、,一條漸近線方程為,過與這條漸近線垂直的直線方程為,由,得到點P的坐標(biāo)為,又因為,所以,所以,所以.故選:D7、A【解析】首先求出直線過定點,再判斷點在圓內(nèi),即可判斷;【詳解】解:直線恒過定點,又,即點在圓內(nèi)部,所以直線與圓相交;故選:A8、C【解析】由,可得存在實數(shù),使,然后將代入化簡可求得結(jié)果【詳解】,,因為,所以存在實數(shù),使,所以,所以,所以,得,,所以,故選:C9、B【解析】由等差數(shù)列的通項公式判定選項A正確;利用等比數(shù)列的通項公式求出,即判定選項B錯誤;利用對數(shù)的運(yùn)算和等差數(shù)列的定義判定選項C正確;利用錯位相減法求和,即判定選項D正確.【詳解】對于A:由條件可得,,即選項A正確;對于B:由條件可得,,即選項B錯誤;對于C:因為,所以,則,即數(shù)列是首項和公差均為的等差數(shù)列,即選項C正確;對于D:,設(shè)數(shù)列的前項和為,則,,上面兩式相減可得,所以,即選項D正確.故選:B.10、C【解析】直接由公式,計算兩直線的方向向量的夾角,進(jìn)而得出直線與所成角的大小【詳解】因為,,所以,所以,所以直線與所成角的大小為故選:C11、C【解析】由題意,直線的斜率為,利用點斜式即可得答案.【詳解】解:因為直線與直線平行,所以直線的斜率為,又直線過點,所以直線的方程為,即,故選:C.12、A【解析】按照二項展開式展開表示出第二項第三項,解不等式即可.【詳解】由二項展開式,第二項為:,第三項為:,依題意,兩邊約去得到,即,由知,則,同時約去得到.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】由直線垂直的性質(zhì)求解即可.【詳解】由題意得,解得.故答案為:14、【解析】利用已知條件求出p,設(shè)出P的坐標(biāo),然后求解的表達(dá)式,利用基本不等式即可得出結(jié)論【詳解】解:由題意可知:,設(shè)點,P到直線的距離為d,則,所以,當(dāng)且僅當(dāng)x時,的最小值為,此時,故答案為:【點睛】本題考查拋物線的簡單性質(zhì)的應(yīng)用,基本不等式的應(yīng)用,屬于中檔題15、【解析】根據(jù)題意,歸納總結(jié),結(jié)合等比數(shù)列的前項和公式,即可求得的通項公式.【詳解】結(jié)合已知條件,歸納總結(jié)如下:第一個圖案中,著色正方形的面積即;第二個圖案中,新著色的正方形面積是,故著色正方形的面積即;第三個圖案中,新著色的正方形面積是,故著色正方形的面積即;第個圖案中,新著色的正方形面積是,故著色正方形的面積即.故.故答案為:.16、992【解析】列舉數(shù)列的前幾項,觀察特征,可得出.詳解】由題意得觀察規(guī)律可得中,以為被減數(shù)的項共有個,因為,所以是中的第5項,所以.故答案為:992.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)利用導(dǎo)數(shù)求出切線斜率,即可求出切線方程;(2)把題意轉(zhuǎn)化為:存在,使得不等式成立,構(gòu)造新函數(shù),對m進(jìn)行分類討論,利用導(dǎo)數(shù)求,解不等式,即可求出m的范圍.【小問1詳解】當(dāng)時,,定義域為R,.所以,.所以曲線在點(0,f(0))處的切線方程為:,即.【小問2詳解】不等式可化為:,即存在,使得不等式成立.構(gòu)造函數(shù),則.①當(dāng)時,恒成立,故在上單調(diào)遞增,故,解得:,故;②當(dāng)時,令,解得:令,解得:故在上單調(diào)遞減,在上單調(diào)遞增,又,故,解得:,這與相矛盾,舍去;③當(dāng)時,恒成立,故在上單調(diào)遞減,故,不符合題意,應(yīng)舍去.綜上所述:m的取值范圍為:.18、(1);(2).【解析】(1)根據(jù)條件可以確定圓心坐標(biāo)和半徑,寫出圓的方程;(2)先求圓心到直線的距離,結(jié)合勾股定理可求弦長.【詳解】(1)由題意可得,圓心為(2,0),半徑為2.則圓的方程為;(2)圓心(2,0)到l的距離為d,=1,.【點睛】圓的方程求解方法:(1)直接法:確定圓心,求出半徑,寫出方程;(2)待定系數(shù)法:設(shè)出圓的方程,可以是標(biāo)準(zhǔn)方程也可以是一般式方程,根據(jù)條件列出方程,求解系數(shù)即可.19、(1)(2)【解析】(1)求出直線的斜率,利用點斜式方程求解即可;(2)求出線段的中點坐標(biāo),求出斜率然后求解垂直平分線方程.試題解析:(1)∵點∴∴由點斜式得直線的方程(2)∵點∴線段的中點坐標(biāo)為∵∴線段的垂直平分線的斜率為∴由點斜式得線段的垂直平分線的方程為20、(1)證明見解析(2)【解析】(1)根據(jù)條件先證明,再根據(jù)線面平行的判定定理證明平面PAD;(2)確定坐標(biāo)原點,建立空間直角坐標(biāo)系,從而求出相關(guān)的點的坐標(biāo),進(jìn)而求得相關(guān)向量的坐標(biāo),再求相關(guān)平面的法向量,根據(jù)向量的夾角公式求得結(jié)果.【小問1詳解】證明:由已知為等邊三角形,且,所以又因為,,在中,,又,所以在底面中,,又平面,平面,所以平面.【小問2詳解】解:取的中點,連接,則,由(1)知,所以,分別以,,為,,軸建立空間直角坐標(biāo)系.則,,,所以,由已知可知平面ABCD的一個法向量設(shè)平面的一個法向量為,由,即,得,令,則,所以,由圖形可得二面角為銳角,所以二面角的余弦值為.21、(1)證明見解析;(2)證明見解析.【解析】(1)連接,交于點M,連接ME,則M為中點.根據(jù)三角形的中位線定理和平行四邊形的判斷和性質(zhì)可證得,再由線面平行的判定定理可得證;(2)由線面垂直的性質(zhì)和判定可得證.【詳解】證明:(1)連接,交于點M,連接ME,則M為中點因為E、F分別是與的中點,所以,則,從而為平行四邊形,則又因為平面平面,所以平面(2)由平面,因為平面,所以而,M為的中點,所以因為,所以平面,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年食堂承包經(jīng)營員工勞動權(quán)益保障協(xié)議3篇
- 2025年食堂蔬菜糧油智能化管理系統(tǒng)合作協(xié)議3篇
- 2025年度個人房產(chǎn)托管服務(wù)合同范本4篇
- 2025版高科技園區(qū)門衛(wèi)值班人員崗位聘用合同協(xié)議4篇
- 2025年度個人虛擬現(xiàn)實體驗服務(wù)合同范本4篇
- 物業(yè)服務(wù)公司2025年度合同管理制度解讀6篇
- 個體損害和解合同格式(2024年版)版B版
- 2025年度生態(tài)園林蟲害生物防治技術(shù)合同范本3篇
- 2025年度數(shù)碼產(chǎn)品代銷合同范本
- 2025年食堂食堂食材采購及加工配送協(xié)議3篇
- 割接方案的要點、難點及采取的相應(yīng)措施
- 2025年副護(hù)士長競聘演講稿(3篇)
- 2024年08月北京中信銀行北京分行社會招考(826)筆試歷年參考題庫附帶答案詳解
- 原發(fā)性腎病綜合征護(hù)理
- 2024年高考英語復(fù)習(xí)(新高考專用)完形填空之詞匯復(fù)現(xiàn)
- 【京東物流配送模式探析及發(fā)展對策探究開題報告文獻(xiàn)綜述4100字】
- 施工現(xiàn)場工程令
- 藥物經(jīng)濟(jì)學(xué)評價模型構(gòu)建
- Daniel-Defoe-Robinson-Crusoe-笛福和魯濱遜漂流記全英文PPT
- 第一章威爾遜公共行政管理理論
- 外科護(hù)理(高職護(hù)理專業(yè))PPT完整全套教學(xué)課件
評論
0/150
提交評論