版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
上海市市八中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測(cè)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在棱長(zhǎng)為2的正方體中,是棱上一動(dòng)點(diǎn),點(diǎn)是面的中心,則的值為()A.4 B.C.2 D.不確定2.在的展開式中,只有第4項(xiàng)的二項(xiàng)式系數(shù)最大,且所有項(xiàng)的系數(shù)和為0,則含的項(xiàng)的系數(shù)為()A.-20 B.-15C.-6 D.153.阿基米德(公元前287年~公元前212年)不僅是著名的物理學(xué)家,也是著名的數(shù)學(xué)家,他利用“逼近法”得到的橢圓的面積除以圓周率等于橢圓的長(zhǎng)半軸長(zhǎng)與短半軸長(zhǎng)的乘積.若橢圓的對(duì)稱軸為坐標(biāo)軸,焦點(diǎn)在軸上,且橢圓的離心率為,面積為,則橢圓的標(biāo)準(zhǔn)方程為()A. B.C. D.4.與空間向量共線的一個(gè)向量的坐標(biāo)是()A. B.C. D.5.?dāng)?shù)學(xué)美的表現(xiàn)形式不同于自然美或藝術(shù)美那樣直觀,它蘊(yùn)藏于特有的抽象概念,公式符號(hào),推理論證,思維方法等之中,揭示了規(guī)律性,是一種科學(xué)的真實(shí)美.平面直角坐標(biāo)系中,曲線:就是一條形狀優(yōu)美的曲線,對(duì)于此曲線,給出如下結(jié)論:①曲線圍成的圖形的面積是;②曲線上的任意兩點(diǎn)間的距離不超過;③若是曲線上任意一點(diǎn),則的最小值是其中正確結(jié)論的個(gè)數(shù)為()A. B.C. D.6.已知橢圓C的焦點(diǎn)為,過F2的直線與C交于A,B兩點(diǎn).若,,則C的方程為A. B.C. D.7.如圖,在直三棱柱中,AB=BC,,若棱上存在唯一的一點(diǎn)P滿足,則()A. B.1C. D.28.如圖,已知最底層正方體的棱長(zhǎng)為a,上層正方體下底面的四個(gè)頂點(diǎn)是下層正方體上底面各邊的中點(diǎn),依此方法一直繼續(xù)下去,則所有這些正方體的體積之和將趨近于()A. B.C. D.9.如圖,是函數(shù)的部分圖象,且關(guān)于直線對(duì)稱,則()A. B.C. D.10.設(shè)曲線在點(diǎn)處的切線與x軸、y軸分別交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),則的面積等于()A.1 B.2C.4 D.611.命題“,都有”的否定為()A.,使得 B.,使得C.,使得 D.,使得12.若拋物線的焦點(diǎn)與橢圓的下焦點(diǎn)重合,則m的值為()A.4 B.2C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若,則___14.設(shè)函數(shù)是函數(shù)的導(dǎo)函數(shù),已知,且,則使得成立的x的取值范圍是_________.15.若雙曲線的一條漸近線被圓所截得的弦長(zhǎng)為2,則該雙曲線的實(shí)軸長(zhǎng)為______.16.已知函數(shù),,則曲線在處的切線方程為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知圓:,過圓外一點(diǎn)作圓的兩條切線,,,為切點(diǎn),設(shè)為圓上的一個(gè)動(dòng)點(diǎn).(1)求的取值范圍;(2)求直線的方程.18.(12分)已知函數(shù).(1)討論函數(shù)的單調(diào)性;(2)若恒成立,求實(shí)數(shù)的取值范圍.19.(12分)已知拋物線E:過點(diǎn)Q(1,2),F(xiàn)為其焦點(diǎn),過F且不垂直于x軸的直線l交拋物線E于A,B兩點(diǎn),動(dòng)點(diǎn)P滿足△PAB的垂心為原點(diǎn)O.(1)求拋物線E的方程;(2)求證:動(dòng)點(diǎn)P在定直線m上,并求的最小值.20.(12分)如圖,圓錐的底面直徑與母線長(zhǎng)均為4,PO是圓錐的高,點(diǎn)C是底面直徑AB所對(duì)弧的中點(diǎn),點(diǎn)D是母線PA的中點(diǎn)(1)求圓錐的表面積;(2)求點(diǎn)B到直線CD的距離21.(12分)某企業(yè)新研發(fā)了一種產(chǎn)品,產(chǎn)品的成本由原料成本及非原料成本組成.每件產(chǎn)品的非原料成本(元)與生產(chǎn)該產(chǎn)品的數(shù)量(千件)有關(guān),經(jīng)統(tǒng)計(jì)得到如下數(shù)據(jù):x12345678y56.53122.7517.815.9514.51312.5根據(jù)以上數(shù)據(jù)繪制了散點(diǎn)圖觀察散點(diǎn)圖,兩個(gè)變量間關(guān)系考慮用反比例函數(shù)模型和指數(shù)函數(shù)模型分別對(duì)兩個(gè)變量的關(guān)系進(jìn)行擬合.已求得用指數(shù)函數(shù)模型擬合的回歸方程為,與x的相關(guān)系數(shù).(1)用反比例函數(shù)模型求y關(guān)于x的回歸方程;(2)用相關(guān)系數(shù)判斷上述兩個(gè)模型哪一個(gè)擬合效果更好(精確到0.001),并用其估計(jì)產(chǎn)量為10千件時(shí)每件產(chǎn)品非原料成本;(3)根據(jù)企業(yè)長(zhǎng)期研究表明,非原料成本y服從正態(tài)分布,用樣本平均數(shù)作為的估計(jì)值,用樣本標(biāo)準(zhǔn)差s作為的估計(jì)值,若非原料成本y在之外,說明該成本異常,并稱落在之外的成本為異樣成本,此時(shí)需尋找出現(xiàn)異樣成本的原因.利用估計(jì)值判斷上述非原料成本數(shù)據(jù)是否需要尋找出現(xiàn)異樣成本的原因?參考數(shù)據(jù)(其中):0.340.1151.531845777.55593.0630.70513.9參考公式:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:,,相關(guān)系數(shù).22.(10分)為慶祝中國(guó)共產(chǎn)黨成立100周年,某校舉行了黨史知識(shí)競(jìng)賽,在必答題環(huán)節(jié),甲、乙兩位選手分別從3道選擇題(1)甲至少抽到1道填空題(2)甲答對(duì)的題數(shù)比乙多的概率.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】畫出圖形,建立空間直角坐標(biāo)系,用向量法求解即可【詳解】如圖,以為原點(diǎn)建立如圖所示的空間直角坐標(biāo)系,因?yàn)檎襟w棱長(zhǎng)為2,點(diǎn)是面的中心,是棱上一動(dòng)點(diǎn),所以,,,故選:A2、C【解析】先由只有第4項(xiàng)的二項(xiàng)式系數(shù)最大,求出n=6;再由展開式的所有項(xiàng)的系數(shù)和為0,用賦值法求出,用通項(xiàng)公式求出的項(xiàng)的系數(shù).【詳解】∵在的展開式中,只有第4項(xiàng)的二項(xiàng)式系數(shù)最大,∴在的展開式有7項(xiàng),即n=6;而展開式的所有項(xiàng)的系數(shù)和為0,令x=1,代入,即,所以.∴是展開式的通項(xiàng)公式為:,要求含的項(xiàng),只需,解得,所以系數(shù)為.故選:C3、C【解析】由題意,設(shè)出橢圓的標(biāo)準(zhǔn)方程為,然后根據(jù)橢圓的離心率以及橢圓面積列出關(guān)于的方程組,求解方程組即可得答案【詳解】由題意,設(shè)橢圓的方程為,由橢圓的離心率為,面積為,∴,解得,∴橢圓的方程為,故選:C.4、C【解析】根據(jù)空間向量共線的坐標(biāo)表示即可得出結(jié)果.【詳解】.故選:C.5、C【解析】結(jié)合已知條件寫出曲線的解析式,進(jìn)而作出圖像,對(duì)于①,通過圖像可知,所求面積為四個(gè)半圓和一個(gè)正方形面積之和,結(jié)合數(shù)據(jù)求解即可;對(duì)于②,根據(jù)圖像求出曲線上的任意兩點(diǎn)間的距離的最大值即可判斷;對(duì)于③,將問題轉(zhuǎn)化為點(diǎn)到直線的距離,然后利用圓上一點(diǎn)到直線的距離的最小值為圓心到直線的距離減去半徑即可求解.【詳解】當(dāng)且時(shí),曲線的方程可化為:;當(dāng)且時(shí),曲線的方程可化為:;當(dāng)且時(shí),曲線的方程可化為:;當(dāng)且時(shí),曲線的方程可化為:,曲線的圖像如下圖所示:由上圖可知,曲線所圍成的面積為四個(gè)半圓的面積與邊長(zhǎng)為的正方形的面積之和,從而曲線所圍成的面積,故①正確;由曲線的圖像可知,曲線上的任意兩點(diǎn)間的距離的最大值為兩個(gè)半徑與正方形的邊長(zhǎng)之和,即,故②錯(cuò)誤;因?yàn)榈街本€的距離為,所以,當(dāng)最小時(shí),易知在曲線的第一象限內(nèi)的圖像上,因?yàn)榍€的第一象限內(nèi)的圖像是圓心為,半徑為的半圓,所以圓心到的距離,從而,即,故③正確,故選:C.6、B【解析】由已知可設(shè),則,得,在中求得,再在中,由余弦定理得,從而可求解.【詳解】法一:如圖,由已知可設(shè),則,由橢圓的定義有.在中,由余弦定理推論得.在中,由余弦定理得,解得所求橢圓方程為,故選B法二:由已知可設(shè),則,由橢圓的定義有.在和中,由余弦定理得,又互補(bǔ),,兩式消去,得,解得.所求橢圓方程為,故選B【點(diǎn)睛】本題考查橢圓標(biāo)準(zhǔn)方程及其簡(jiǎn)單性質(zhì),考查數(shù)形結(jié)合思想、轉(zhuǎn)化與化歸的能力,很好的落實(shí)了直觀想象、邏輯推理等數(shù)學(xué)素養(yǎng)7、D【解析】設(shè),構(gòu)建空間直角坐標(biāo)系,令且,求出,,再由向量垂直的坐標(biāo)表示列方程,結(jié)合點(diǎn)P的唯一性有求參數(shù)a,即可得結(jié)果.【詳解】由題設(shè),構(gòu)建如下圖空間直角坐標(biāo)系,若,則,,且,所以,,又存在唯一的一點(diǎn)P滿足,所以,則,故,可得,此時(shí),所以.故選:D8、D【解析】由已知可判斷出所有這些正方體的體積構(gòu)成首項(xiàng)為,公比為的等比數(shù)列,然后求和可得答案.【詳解】最底層上面第一個(gè)正方體的棱長(zhǎng)為,其體積為,上面第二個(gè)正方體的棱長(zhǎng)為,其體積為,上面第三個(gè)正方體的棱長(zhǎng)為,其體積為,所有這些正方體的體積構(gòu)成首項(xiàng)為,公比為的等比數(shù)列,其前項(xiàng)和為,當(dāng),,所以所有這些正方體的體積之和將趨近于.故選:D.9、C【解析】先根據(jù)條件確定為函數(shù)的極大值點(diǎn),得到的值,再根據(jù)圖像的單調(diào)性和導(dǎo)數(shù)幾何意義得到和的正負(fù)即可判斷.【詳解】根據(jù)題意得,為函數(shù)部分函數(shù)的極大值點(diǎn),所以,又因?yàn)楹瘮?shù)在單調(diào)遞增,由圖像可知處切線斜率為銳角,根據(jù)導(dǎo)數(shù)的幾何意義,所以,又因?yàn)楹瘮?shù)在單調(diào)遞增,由圖像可知處切線斜率為鈍角,根據(jù)導(dǎo)數(shù)的幾何意義所以.即.故選:C.10、C【解析】求出原函數(shù)的導(dǎo)函數(shù),得到函數(shù)在處的導(dǎo)數(shù)值,寫出切線方程,分別求得切線在兩坐標(biāo)軸上的坐標(biāo),再由三角形面積公式求解【詳解】由,得,,又切線過點(diǎn),曲線在點(diǎn)處的切線方程為,取,得,取,得的面積等于故選:C11、A【解析】根據(jù)命題的否定的定義判斷【詳解】全稱命題的否定是特稱命題,命題“,都有”的否定為:,使得故選:A12、D【解析】求出橢圓的下焦點(diǎn),即拋物線的焦點(diǎn),即可得解.【詳解】解:橢圓的下焦點(diǎn)為,即為拋物線焦點(diǎn),∴,∴.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、##0.5【解析】導(dǎo)數(shù)的定義公式的變形應(yīng)用,要求分子分母的變化量相同.【詳解】故答案為:.14、【解析】構(gòu)造函數(shù)利用導(dǎo)數(shù)研究單調(diào)性,即可得到答案;【詳解】,令,,單調(diào)遞減,且,,x的取值范圍是,故答案為:15、2【解析】求得雙曲線的一條漸近線方程,求得圓心和半徑,運(yùn)用點(diǎn)到直線的距離公式和弦長(zhǎng)公式,可得a,b的關(guān)系,即可得到的值【詳解】一漸近線x+ay=0,被圓(x-2)2+y2=4所截弦長(zhǎng)為2,所以圓心到直線距為,即,a=1.所以雙曲線的實(shí)軸長(zhǎng)為2.故答案為:16、【解析】根據(jù)導(dǎo)數(shù)的幾何意義求得在點(diǎn)處的切線方程.【詳解】由,求導(dǎo),知,又,則函數(shù)在點(diǎn)處的切線方程為.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)求出PM,就可以求PQ的范圍;(2)使用待定系數(shù)法求出切線的方程,再求求切點(diǎn)的坐標(biāo),從而可以求切點(diǎn)的連線的方程.【小問1詳解】如下圖所示,因?yàn)閳A的方程可化為,所以圓心,半徑,且,所以,故取值范圍為.【小問2詳解】可知切線,中至少一條的斜率存在,設(shè)為,則此切線為即,由圓心到此切線的距離等于半徑,即,得所以兩條切線的方程為和,于是由聯(lián)立方程組得兩切點(diǎn)的坐標(biāo)為和所以故直線的方程為即18、(1)當(dāng)時(shí),上單調(diào)遞增;當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增;當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增.(2)【解析】(1)先求函數(shù)的定義域,再求導(dǎo),根據(jù)導(dǎo)數(shù)即可求出函數(shù)的單調(diào)區(qū)間;(2)根據(jù)(1)的結(jié)論,分別求時(shí)的最小值,令,即可求出實(shí)數(shù)的取值范圍.【小問1詳解】易知函數(shù)的定義域?yàn)椋?,?dāng)時(shí),,所以在上單調(diào)遞增;當(dāng)時(shí),,令,得;令,得,所以在上單調(diào)遞減,在上單調(diào)遞增;當(dāng)時(shí),,令,得;令,得,所以在上單調(diào)遞減,在上單調(diào)遞增.【小問2詳解】當(dāng)時(shí),成立,所以符合題意;當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增,要使恒成立,則,解得;當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增,要使恒成立,則,解得.綜上所述,實(shí)數(shù)的取值范圍是.19、(1);(2)證明見解析,的最小值為.【解析】(1)將點(diǎn)的坐標(biāo)代入拋物線方程,由此求得的值,進(jìn)而求得拋物線的方程.(2)設(shè)出直線的方程,聯(lián)立直線的方程與拋物線的方程,寫出韋達(dá)定理,設(shè)出直線的方程,聯(lián)立直線的方程求得的坐標(biāo),由此判斷出動(dòng)點(diǎn)在定直線上.求得的表達(dá)式,利用基本不等式求得其最小值.【詳解】(1)將點(diǎn)坐標(biāo)代入拋物線方程得,所以.(2)由(1)知拋物線的方程為,所以,設(shè)直線的方程為,設(shè),由消去得,所以.由于為三角形的垂心,所以,所以直線的方程為,即.同理可求得直線的方程為.由,結(jié)合,解得,所以在定直線上.直線的方程為,到直線的距離為,到直線的距離為.所以,當(dāng)且僅當(dāng)時(shí)取等號(hào).所以的最小值為.【點(diǎn)睛】本小題主要考查拋物線方程的求法,考查直線和拋物線的位置關(guān)系,考查拋物線中三角形面積的有關(guān)計(jì)算,屬于中檔題.20、(1)(2)【解析】(1)直接運(yùn)用圓錐的表面積公式計(jì)算即可;(2)建立空間直角坐標(biāo),然后運(yùn)用向量法計(jì)算可求得答案.【小問1詳解】【小問2詳解】如圖,建立直角坐標(biāo)系,,,,∴B在CD上投影的長(zhǎng)度∴B到CD的距離解法2:設(shè)直線CD上一點(diǎn)E滿足令,則∴,∴,∴∴,故B到CD距離為.21、(1)(2)反比例函數(shù)模型擬合效果更好,產(chǎn)量為10千件時(shí)每件產(chǎn)品的非原料成本約為11元,(3)見解析【解析】(1)令,則可轉(zhuǎn)化為,求出樣本中心,回歸方程的斜率,轉(zhuǎn)化求回歸方程即可,(2)求出與的相關(guān)系數(shù),通過比較,可得用反比例函數(shù)模型擬合效果更好,然后將代入回歸方程中可求結(jié)果(3)利用已知數(shù)據(jù)求出樣本標(biāo)準(zhǔn)差s,從而可得非原料成本y服從正態(tài)分布,再計(jì)算,然后各個(gè)數(shù)據(jù)是否在此范圍內(nèi),從而可得結(jié)論【小問1詳解】令,則可轉(zhuǎn)化為,因?yàn)?,所以,所以,所以,所以y關(guān)于x的回歸方程為【小問2詳解】與的相關(guān)系數(shù)為因?yàn)?,所以用反比例函?shù)模型擬合效果更好,把代入回歸方程得(元),所以產(chǎn)量為10千件時(shí)每件產(chǎn)品的非原料成本約為11元【小問3詳解】因?yàn)?,所以,因?yàn)闃颖緲?biāo)準(zhǔn)差為,所以,所以非原料成本y服從正態(tài)分布,所以因?yàn)樵谥?,所以需要此非原料成本?shù)據(jù)尋找出現(xiàn)異樣成本的原因22、(1);(2).【解析】(1)把3道選擇題(2)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 五年級(jí)下冊(cè)數(shù)學(xué)聽評(píng)課記錄《 分?jǐn)?shù)加減法簡(jiǎn)便運(yùn)算》人教新課標(biāo)
- 八年級(jí)道德與法治下冊(cè)第二單元理解權(quán)利義務(wù)第四課公民義務(wù)第二框依法履行義務(wù)聽課評(píng)課記錄(新人教版)
- 湘教版數(shù)學(xué)九年級(jí)上冊(cè)《4.4解直角三角形的應(yīng)用(1)》聽評(píng)課記錄
- 人教版歷史八年級(jí)下冊(cè)第15課《鋼鐵長(zhǎng)城》聽課評(píng)課記錄
- 天天練習(xí)-四年級(jí)上冊(cè)口算練習(xí)
- 七年級(jí)下學(xué)期語文教學(xué)工作總結(jié)
- 蘇教版小學(xué)數(shù)學(xué)三年級(jí)上冊(cè)口算試題全套
- 蘇教版四年級(jí)數(shù)學(xué)下冊(cè)期末復(fù)習(xí)口算練習(xí)題三
- 滬科版八年級(jí)數(shù)學(xué)下冊(cè)聽評(píng)課記錄《第17章一元二次方程數(shù)17.2一元二次方程的解法(第3課時(shí))》
- LED屏幕安裝協(xié)議書范本
- 華為攜手深圳國(guó)際會(huì)展中心創(chuàng)建世界一流展館
- 2023版思想道德與法治專題2 領(lǐng)悟人生真諦 把握人生方向 第3講 創(chuàng)造有意義的人生
- 全過程工程咨詢服務(wù)技術(shù)方案
- 小報(bào):人工智能科技科學(xué)小報(bào)手抄報(bào)電子小報(bào)word小報(bào)
- GB/T 41509-2022綠色制造干式切削工藝性能評(píng)價(jià)規(guī)范
- 企業(yè)生產(chǎn)現(xiàn)場(chǎng)6S管理知識(shí)培訓(xùn)課件
- 五年級(jí)下冊(cè)數(shù)學(xué)課件 第10課時(shí) 練習(xí)課 蘇教版(共11張PPT)
- 三年級(jí)道德與法治下冊(cè)我是獨(dú)特的
- 土木工程畢業(yè)設(shè)計(jì)(論文)-五層宿舍樓建筑結(jié)構(gòu)設(shè)計(jì)
- 青年卒中 幻燈
- 典型倒閘操作票
評(píng)論
0/150
提交評(píng)論