2025屆廣西桂林市數(shù)學(xué)高二上期末質(zhì)量檢測試題含解析_第1頁
2025屆廣西桂林市數(shù)學(xué)高二上期末質(zhì)量檢測試題含解析_第2頁
2025屆廣西桂林市數(shù)學(xué)高二上期末質(zhì)量檢測試題含解析_第3頁
2025屆廣西桂林市數(shù)學(xué)高二上期末質(zhì)量檢測試題含解析_第4頁
2025屆廣西桂林市數(shù)學(xué)高二上期末質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2025屆廣西桂林市數(shù)學(xué)高二上期末質(zhì)量檢測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)在的圖象大致為()A. B.C D.2.函數(shù)的最小值是()A.3 B.4C.5 D.63.設(shè)等差數(shù)列的前n項和為.若,則()A.19 B.21C.23 D.384.設(shè)函數(shù)的圖象為C,則下面結(jié)論中正確的是()A.函數(shù)的最小正周期是B.圖象C關(guān)于點(diǎn)對稱C.函數(shù)在區(qū)間上是增函數(shù)D.圖象C可由函數(shù)的圖象向右平移個單位得到5.通過隨機(jī)詢問110名不同的大學(xué)生是否愛好某項運(yùn)動,得到如下的列聯(lián)表:男女總計愛好402060不愛好203050總計6050110由附表:0.0500.0100.0013.8416.63510.828參照附表,得到的正確結(jié)論是()A.有99%以上的把握認(rèn)為“愛好該項運(yùn)動與性別有關(guān)”B.有99%以上的把握認(rèn)為“愛好該項運(yùn)動與性別無關(guān)”C.在犯錯誤的概率不超過0.1%的前提下,認(rèn)為“愛好該項運(yùn)動與性別有關(guān)”D.在犯錯誤的概率不超過0.1%的前提下,認(rèn)為“愛好該項運(yùn)動與性別無關(guān)”6.在棱長為1的正方體中,點(diǎn),分別是,的中點(diǎn),點(diǎn)是棱上的點(diǎn)且滿足,則兩異面直線,所成角的余弦值是()A. B.C. D.7.某雙曲線的一條漸近方程為,且焦點(diǎn)為,則該雙曲線的方程是()A. B.C. D.8.若兩個不同平面,的法向量分別為,,則()A.,相交但不垂直 B.C. D.以上均不正確9.設(shè),則當(dāng)數(shù)列{an}的前n項和取得最小值時,n的值為()A.4 B.5C.4或5 D.5或610.已知橢圓:的左、右焦點(diǎn)分別為,,下頂點(diǎn)為,直線與橢圓的另一個交點(diǎn)為,若為等腰三角形,則橢圓的離心率為()A. B.C. D.11.已知A,B,C是橢圓M:上三點(diǎn),且A(A在第一象限,B關(guān)于原點(diǎn)對稱,,過A作x軸的垂線交橢圓M于點(diǎn)D,交BC于點(diǎn)E,若直線AC與BC的斜率之積為,則()A.橢圓M的離心率為 B.橢圓M的離心率為C. D.12.雙曲線的焦點(diǎn)坐標(biāo)為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在棱長為1的正方體中,點(diǎn)M為線段上的動點(diǎn),下列四個結(jié)論:①存在點(diǎn)M,使得直線AM與直線夾角為30°;②存在點(diǎn)M,使得與平面夾角的正弦值為;③存在點(diǎn)M,使得三棱錐體積為;④存在點(diǎn)M,使得,其中為二面角的大小,為直線與直線AB所成的角則上述結(jié)論正確的有______.(填上正確結(jié)論的序號)14.已知向量,,且,則實(shí)數(shù)______.15.橢圓的左、右焦點(diǎn)分別為,,為坐標(biāo)原點(diǎn),則以下說法正確的是()A.過點(diǎn)的直線與橢圓交于,兩點(diǎn),則的周長為8B.橢圓上存在點(diǎn),使得C.橢圓的離心率為D.為橢圓上一點(diǎn),為圓上一點(diǎn),則點(diǎn),的最大距離為316.過拋物線的焦點(diǎn)作傾斜角為的直線,與拋物線分別交于兩點(diǎn)(點(diǎn)在軸上方),_________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標(biāo)系xOy中,已知拋物線()的焦點(diǎn)F到雙曲線的漸近線的距離為1.(1)求拋物線C的方程;(2)若不經(jīng)過原點(diǎn)O的直線l與拋物線C交于A、B兩點(diǎn),且,求證:直線l過定點(diǎn).18.(12分)在平面直角坐標(biāo)系xOy中,橢圓C的參數(shù)方程為(θ為參數(shù)),直線l的參數(shù)方程為(t為參數(shù))(Ⅰ)寫出橢圓C的普通方程和直線l的傾斜角;(Ⅱ)若點(diǎn)P(1,2),設(shè)直線l與橢圓C相交于A,B兩點(diǎn),求|PA|·|PB|的值19.(12分)已知圓臺的上下底面半徑分別為,母線長為.求:(1)圓臺的高;(2)圓臺的體積注:圓臺體積公式:,其中,S分別為上下底面面積,h為圓臺的高20.(12分)已知是公差不為零的等差數(shù)列,,且,,成等比數(shù)列(1)求數(shù)列的通項公式;(2)設(shè),求數(shù)列的前項和21.(12分)已知點(diǎn)到兩個定點(diǎn)的距離比為(1)求點(diǎn)的軌跡方程;(2)若過點(diǎn)的直線被點(diǎn)的軌跡截得的弦長為,求直線的方程22.(10分)已知直線和的交點(diǎn)為(1)若直線經(jīng)過點(diǎn)且與直線平行,求直線的方程;(2)若直線經(jīng)過點(diǎn)且與兩坐標(biāo)軸圍成的三角形的面積為,求直線的方程

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】函數(shù)|在[–2,2]上是偶函數(shù),其圖象關(guān)于軸對稱,因?yàn)?,所以排除選項;當(dāng)時,有一零點(diǎn),設(shè)為,當(dāng)時,為減函數(shù),當(dāng)時,為增函數(shù)故選:D.2、D【解析】先判斷函數(shù)的單調(diào)性,再利用其單調(diào)性求最小值【詳解】由,得,因?yàn)?,所以,所以在上單調(diào)遞增,所以,故選:D3、A【解析】由已知及等差數(shù)列的通項公式得到公差d,再利用前n項和公式計算即可.【詳解】設(shè)等差數(shù)列的公差為d,由已知,得,解得,所以.故選:A4、B【解析】化簡函數(shù)解析式,求解最小正周期,判斷選項A,利用整體法求解函數(shù)的對稱中心和單調(diào)遞增區(qū)間,判斷選項BC,再由圖象變換法則判斷選項D.【詳解】,所以函數(shù)的最小正周期為,A錯;令,得,所以函數(shù)圖象關(guān)于點(diǎn)對稱,B正確;由,得,所以函數(shù)在上為增函數(shù),在上為減函數(shù),C錯;函數(shù)的圖象向右平移個單位得,D錯.故選:B5、A【解析】由,而,故由獨(dú)立性檢驗(yàn)的意義可知選A6、A【解析】建立空間直角坐標(biāo)系,寫出點(diǎn)、、、和向量的、坐標(biāo),運(yùn)用求異面直線余弦值的公式即可求出.【詳解】解:以為原點(diǎn),分別以,,所在直線為,,軸建立如圖所示的空間直角坐標(biāo)第,則,,,,故,,,故兩異面直線,所成角的余弦值是.故選:A.【點(diǎn)睛】本題考查求異面直線所成角的余弦值,屬于中檔題.7、D【解析】設(shè)雙曲線的方程為,利用焦點(diǎn)為求出的值即可.【詳解】因?yàn)殡p曲線的一條漸近方程為,且焦點(diǎn)為,所以可設(shè)雙曲線的方程為,則,,所以該雙曲線方程為.故選:D.8、B【解析】由向量數(shù)量積為0可求.【詳解】∵,,∴,∴,∴,故選:B.9、A【解析】結(jié)合等差數(shù)列的性質(zhì)得到,解不等式組即可求出結(jié)果.【詳解】由,即,解得,因?yàn)?故.故選:A.10、B【解析】由橢圓定義可得各邊長,利用三角形相似,可得點(diǎn)坐標(biāo),再根據(jù)點(diǎn)在橢圓上,可得離心率.【詳解】如圖所示:因?yàn)闉榈妊切危?,又,所以,所以,過點(diǎn)作軸,垂足為,則,由,,得,因?yàn)辄c(diǎn)在橢圓上,所以,所以,即離心率,故選:B.11、C【解析】設(shè)出點(diǎn),,的坐標(biāo),將點(diǎn),分別代入橢圓方程兩式作差,構(gòu)造直線和的斜率之積,得到,即可求橢圓的離心率,利用,求出,可知點(diǎn)在軸上,且為的中點(diǎn),則.【詳解】設(shè),,,則,,,兩式相減并化簡得,即,則,則AB錯誤;∵,,∴,又∵,∴,即,解得,則點(diǎn)在軸上,且為的中點(diǎn)即,則正確.故選:C.12、C【解析】把雙曲線方程化為標(biāo)準(zhǔn)形式,直接寫出焦點(diǎn)坐標(biāo).【詳解】,焦點(diǎn)在軸上,,故焦點(diǎn)坐標(biāo)為.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、②③【解析】對①:由連接,,由平面,即可判斷;對③:設(shè)到平面的距離為,則,所以即可判斷;對④:以為坐標(biāo)原點(diǎn)建立如圖所示的空間直角坐標(biāo)系,設(shè),利用向量法求出與,比較大小即可判斷;對②:設(shè)與平面夾角為,利用向量法求出,即可求解判斷.【詳解】解:對①:連接,,在正方體中,由平面,可得,又,,所以平面,所以,故①錯誤;對③:設(shè)到平面的距離為,則,所以,故③正確;對④:以為坐標(biāo)原點(diǎn)建立如圖所示的空間直角坐標(biāo)系,設(shè),則,0,,,0,,,,,,,,所以,,,,,,設(shè)平面的法向量為,,,則,即,取,,,又,1,是平面的一個法向量,又二面角為銳二面角或直角,所以,,,又,,,故④錯誤對②:由④的解析知,,,,設(shè)平面的法向量為,則,即,取,則,設(shè)與平面夾角為,令,即,又,解得或,故②正確.故答案為:②③.14、【解析】利用向量平行的條件直接解出.【詳解】因?yàn)橄蛄?,,且,所以,解?故答案為:.15、ABD【解析】結(jié)合橢圓定義判斷A選項的正確性,結(jié)合向量數(shù)量積的坐標(biāo)運(yùn)算判斷B選項的正確性,直接法求得橢圓的離心率,由此判斷C選項的正確性,結(jié)合兩點(diǎn)間距離公式判斷D選項的正確性.【詳解】對于選項:由橢圓定義可得:,因此的周長為,所以選項正確;對于選項:設(shè),則,且,又,,所以,,因此,解得,,故選項正確;對于選項:因?yàn)?,,所以,即,所以離心率,所以選項錯誤;對于選項:設(shè),,則點(diǎn)到圓的圓心的距離為,因?yàn)?,所以,所以選項正確,故選:ABD16、3【解析】根據(jù)拋物線焦半徑公式,所以.故答案為:3.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析【解析】(1)求出雙曲線的漸近線方程,由點(diǎn)到直線距離公式可得參數(shù)值得拋物線方程;(2)設(shè)直線方程為,,直線方程代入拋物線方程后應(yīng)用韋達(dá)定理得,代入可得值,得定點(diǎn)坐標(biāo)【小問1詳解】已知雙曲線的一條漸近線方程為,即,拋物線的焦點(diǎn)為,所以,解得(因?yàn)椋?,所以拋物線方程為;【小問2詳解】由題意設(shè)直線方程為,設(shè)由得,,,又,所以,所以,直線不過原點(diǎn),,所以所以直線過定點(diǎn)18、(I)見解析;(Ⅱ).【解析】(Ⅰ)利用平方法消去θ得到橢圓C的普通方程為,根據(jù)直線參數(shù)方程的幾何意義求出直線的斜率,從而可得結(jié)果;(Ⅱ)把直線的方程,代入中,利用直線參數(shù)方程的幾何意義求出直線的斜率結(jié)合韋達(dá)定理可得結(jié)果.試題解析:(Ⅰ)消去θ得到橢圓C的普通方程為∵直線的斜率為,∴直線l的傾斜角為(Ⅱ)把直線的方程,代入中,得即,∴t1·t2=4,即|PA|·|PB|=419、(1);(2).【解析】(1)作出圓臺的直觀圖,過點(diǎn)A作,垂足為H,由勾股定理可求圓臺的高;(2)結(jié)合(1),利用圓臺的體積公式可求圓臺的體積【詳解】(1)作出圓臺的直觀圖,如圖,設(shè)圓臺上下底面圓心分別為,為圓臺的一條母線,連接,,過點(diǎn)A作,垂足為H,則的長等于圓臺的高,因?yàn)閳A臺的上下底面半徑分別為,母線長為所以,,則,可得,故圓臺高為;(2)圓的面積圓的面積為故圓臺的體積為20、(1);(2)【解析】(1)由等差數(shù)列以及等比中項的公式代入聯(lián)立求解出,再利用等差數(shù)列的通項公式即可求得答案;(2)利用分組求和法,根據(jù)求和公式分別求出等差數(shù)列與等比數(shù)列的前項和再相加即可.【詳解】(1)由題意,,,即,聯(lián)立解得,所以數(shù)列的通項公式為;(2)由(1)得,,所以【點(diǎn)睛】關(guān)于數(shù)列前項和的求和方法:分組求和法:兩個數(shù)列等差或者等比數(shù)列相加時利用分組求和法計算;裂項相加法:數(shù)列的通項公式為分式時可考慮裂項相消法求和;錯位相減法:等差乘以等比數(shù)列的情況利用錯位相減法求和.21、(1)(2)或【解析】(1)設(shè)出,表達(dá)出,直接法求出軌跡方程;(2)在第一問的基礎(chǔ)上,先考慮直線斜率不存在時是否符合要求,再考慮斜率存在時,設(shè)出直線方程,表達(dá)出圓心到直線的距離,利用垂徑定理列出方程,求出直線方程.【小問1詳解】設(shè),則,,故,兩邊平方得:【小問2詳解】當(dāng)直線斜率不存在時,直線為,此時弦長為,滿足題意;當(dāng)直線斜率存在時,設(shè)直線,則圓心到直線距離為,由垂徑定理得:,解得:,此時直線的方程為,綜上:直

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論