2025屆黑龍江省哈爾濱市阿城區(qū)龍滌中學(xué)高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第1頁
2025屆黑龍江省哈爾濱市阿城區(qū)龍滌中學(xué)高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第2頁
2025屆黑龍江省哈爾濱市阿城區(qū)龍滌中學(xué)高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第3頁
2025屆黑龍江省哈爾濱市阿城區(qū)龍滌中學(xué)高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第4頁
2025屆黑龍江省哈爾濱市阿城區(qū)龍滌中學(xué)高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2025屆黑龍江省哈爾濱市阿城區(qū)龍滌中學(xué)高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.雙曲線的離心率的取值范圍為,則實(shí)數(shù)的取值范圍為()A. B.C. D.2.已知直線,橢圓.若直線l與橢圓C交于A,B兩點(diǎn),則線段AB的中點(diǎn)的坐標(biāo)為()A. B.C. D.3.為調(diào)查學(xué)生的課外閱讀情況,學(xué)校從高二年級四個(gè)班的182人中隨機(jī)抽取30人了解情況,若用系統(tǒng)抽樣的方法,則抽樣的間隔和隨機(jī)剔除的個(gè)數(shù)分別為()A.6,2 B.2,3C.2,60 D.60,24.已知雙曲線的離心率為,則該雙曲線的漸近線方程為()A. B.C. D.5.已知,則方程與在同一坐標(biāo)系內(nèi)對應(yīng)的圖形編號可能是()A.①④ B.②③C.①② D.③④6.若圓與圓外切,則()A. B.C. D.7.已知點(diǎn)、是雙曲線C:的左、右焦點(diǎn),P是C左支上一點(diǎn),若直線的斜率為2,且為直角三角形,則雙曲線C的離心率為()A.2 B.C. D.8.已知,為正實(shí)數(shù),且,則的最小值為()A. B.C. D.19.“”是“方程表示雙曲線”的A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件10.已知,則()A. B.C. D.11.已知點(diǎn)P是雙曲線上的動(dòng)點(diǎn),過原點(diǎn)O的直線l與雙曲線分別相交于M、N兩點(diǎn),則的最小值為()A.4 B.3C.2 D.112.在平面幾何中,將完全覆蓋某平面圖形且直徑最小的圓,稱為該平面圖形的最小覆蓋圓.如線段的最小覆蓋圓就是以該線段為直徑的圓,銳角三角形的最小覆蓋圓就是該三角形的外接圓.若,,,則的最小覆蓋圓的半徑為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.等比數(shù)列的各項(xiàng)均為正數(shù),且,則__________.14.已知數(shù)列是遞增等比數(shù)列,,則數(shù)列的前項(xiàng)和等于.15.傳說古希臘畢達(dá)哥拉斯學(xué)派的數(shù)學(xué)家用沙粒和小石子來研究數(shù).他們根據(jù)沙?;蛐∈铀帕械男螤畎褦?shù)分成許多類,下圖中第一行的稱為三角形數(shù),第二行的稱為五邊形數(shù),則三角形數(shù)的第10項(xiàng)為__________,五邊形數(shù)的第項(xiàng)為__________.16.設(shè)分別是平面的法向量,若,則實(shí)數(shù)的值是________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)著名的“康托爾三分集”是由德國數(shù)學(xué)家康托爾構(gòu)造的,是人類理性思維的產(chǎn)物,其操作過程如下:將閉區(qū)間均分為三段,去掉中間的區(qū)間段記為第一次操作;再將剩下的兩個(gè)閉區(qū)間,分別均分為三段,并各自去掉中間的區(qū)間段,記為第二次操作;…,如此這樣,每次在上一次操作的基礎(chǔ)上,將剩下的各個(gè)區(qū)間分別均分為三段,同樣各自去掉中間的區(qū)間段.操作過程不斷地進(jìn)行下去,以至無窮.每次操作后剩下的閉區(qū)間構(gòu)成的集合即是“康托爾三分集”.例如第一次操作后的“康托爾三分集”為.(1)求第二次操作后的“康托爾三分集”;(2)定義的區(qū)間長度為,記第n次操作后剩余的各區(qū)間長度和為,求;(3)記n次操作后“康托爾三分集”的區(qū)間長度總和為,若使不大于原來的,求n的最小值.(參考數(shù)據(jù):,)18.(12分)從①,②,③,這三個(gè)條件中任選一個(gè),補(bǔ)充在下面問題中并作答:已知等差數(shù)列公差大于零,且前n項(xiàng)和為,,______,,求數(shù)列的前n項(xiàng)和.(注:如果選擇多個(gè)條件分別解答,那么按照第一個(gè)解答計(jì)分)19.(12分)已知函數(shù).(1)求函數(shù)在處的切線方程;(2)求函數(shù)在區(qū)間上的最大值與最小值.20.(12分)已知點(diǎn),.(1)求以為直徑的圓的方程;(2)若直線被圓截得的弦長為,求值21.(12分)已知圓M的圓心在直線上,且圓心在第一象限,半徑為3,圓M被直線截得的弦長為4.(1)求圓M的方程;(2)設(shè)P是直線上的動(dòng)點(diǎn),證明:以MP為直徑的圓必過定點(diǎn),并求所有定點(diǎn)的坐標(biāo).22.(10分)已知函數(shù),其中.(1)當(dāng)時(shí),求函數(shù)的單調(diào)性;(2)若對,不等式在上恒成立,求的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】分析可知,利用雙曲線的離心率公式可得出關(guān)于的不等式,即可解得實(shí)數(shù)的取值范圍.【詳解】由題意有,,則,解得:故選:C.2、B【解析】聯(lián)立直線方程與橢圓方程,消y得到關(guān)于x的一元二次方程,根據(jù)韋達(dá)定理可得,進(jìn)而得出中點(diǎn)的橫坐標(biāo),代入直線方程求出中點(diǎn)的縱坐標(biāo)即可.【詳解】由題意知,,消去y,得,則,,所以A、B兩點(diǎn)中點(diǎn)的橫坐標(biāo)為:,所以中點(diǎn)的縱坐標(biāo)為:,即線段AB的中點(diǎn)的坐標(biāo)為.故選:B3、A【解析】根據(jù)系統(tǒng)抽樣的方法即可求解.【詳解】從人中抽取人,除以,商余,故抽樣的間隔為,需要隨機(jī)剔除人.故選:A.4、C【解析】求得,由此求得雙曲線的漸近線方程.【詳解】離心率,則,所以漸近線方程.故選:C5、B【解析】結(jié)合橢圓、雙曲線、拋物線的圖像,分別對①②③④分析m、n的正負(fù),即可得到答案.【詳解】對于①:由雙曲線的圖像可知:;由拋物線的圖像可知:同號,矛盾.故①錯(cuò)誤;對于②:由雙曲線的圖像可知:;由拋物線的圖像可知:異號,符合要求.故②成立;對于③:由橢圓的圖像可知:;由拋物線的圖像可知:同號,且拋物線的焦點(diǎn)在x軸上,符合要求.故③成立;對于④:由橢圓的圖像可知:;由拋物線的圖像可知:同號,且拋物線的焦點(diǎn)在x軸上,矛盾.故④錯(cuò)誤;故選:B6、C【解析】求得兩圓的圓心坐標(biāo)和半徑,結(jié)合兩圓相外切,列出方程,即可求解.【詳解】由題意,圓與圓可得,,因?yàn)閮蓤A相外切,可得,解得故選:C.7、B【解析】根據(jù)雙曲線的定義和勾股定理利用即可得離心率.【詳解】∵直線的斜率為2,為直角三角形,∴,又,∴,.∵,即,∴故選:B.8、D【解析】利用基本不等式可求的最小值.【詳解】可化為,由基本不等式可得,故,當(dāng)且僅當(dāng)時(shí)等號成立,故的最小值為1,故選:D.9、A【解析】方程表示雙曲線則,解得,是“方程表示雙曲線”的充分不必要條件.故選:A10、B【解析】根據(jù)基本初等函數(shù)的導(dǎo)數(shù)公式及求導(dǎo)法則求導(dǎo)函數(shù)即可.【詳解】.故選:B.11、C【解析】根據(jù)雙曲線的對稱性可得為的中點(diǎn),即可得到,再根據(jù)雙曲線的性質(zhì)計(jì)算可得;【詳解】解:根據(jù)雙曲線的對稱性可知為的中點(diǎn),所以,又在上,所以,當(dāng)且僅當(dāng)在雙曲線的頂點(diǎn)時(shí)取等號,所以故選:C12、C【解析】根據(jù)新定義只需求銳角三角形外接圓的方程即可得解.【詳解】,,,為銳角三角形,的外接圓就是它的最小覆蓋圓,設(shè)外接圓方程為,則解得的最小覆蓋圓方程為,即,的最小覆蓋圓的半徑為.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、10【解析】由等比數(shù)列的性質(zhì)可得,再利用對數(shù)的性質(zhì)可得結(jié)果【詳解】解:因?yàn)榈缺葦?shù)列的各項(xiàng)均為正數(shù),且,所以,所以故答案為:1014、【解析】由題意,,解得或者,而數(shù)列是遞增的等比數(shù)列,所以,即,所以,因而數(shù)列的前項(xiàng)和,故答案為.考點(diǎn):1.等比數(shù)列的性質(zhì);2.等比數(shù)列的前項(xiàng)和公式.15、①.②.【解析】對于三角形數(shù),根據(jù)圖形尋找前后之間的關(guān)系,從而歸納出規(guī)律利用求和公式即得,對于五邊形數(shù)根據(jù)圖形尋找前后之間的關(guān)系,然后利用累加法可得通項(xiàng)公式.【詳解】由題可知三角形數(shù)的第1項(xiàng)為1,第2項(xiàng)為3=1+2,第3項(xiàng)為6=1+2+3,第4項(xiàng)為10=1+2+3+4,,因此,第10項(xiàng)為;五邊形數(shù)的第1項(xiàng)為,第2項(xiàng)為,第3項(xiàng)為,第4項(xiàng)為,…,因此,,所以當(dāng)時(shí),,當(dāng)時(shí)也適合,故,即五邊形數(shù)的第項(xiàng)為.故答案為:55;.16、4【解析】根據(jù)分別是平面的法向量,且,則有求解.【詳解】因?yàn)榉謩e是平面的法向量,且所以所以解得故答案為:4【點(diǎn)睛】本題主要考查空間向量垂直,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)(3)【解析】(1)根據(jù)“康托爾三分集”的定義,即可求得第二次操作后的“康托爾三分集”;(2)根據(jù)“康托爾三分集”的定義,分別求得前幾次的剩余區(qū)間長度的和,求得其通項(xiàng)公式,即可求解;(3)由(2)可得第次操作剩余區(qū)間的長度和為,結(jié)合題意,得到,利用對數(shù)的運(yùn)算公式,即可求解.【小問1詳解】解:根據(jù)“康托爾三分集”的定義可得:第一次操作后的“康托爾三分集”為,第二次操作后的“康托爾三分集”為;【小問2詳解】解:將定義的區(qū)間長度為,根據(jù)“康托爾三分集”的定義可得:每次去掉的區(qū)間長后組成的數(shù)為以為首項(xiàng),為公比的等比數(shù)列,第1次操作去掉的區(qū)間長為,剩余區(qū)間的長度和為,第2次操作去掉兩個(gè)區(qū)間長為的區(qū)間,剩余區(qū)間的長度和為,第3次操作去掉四個(gè)區(qū)間長為的區(qū)間,剩余區(qū)間的長度和為,第4次操作去掉個(gè)區(qū)間長為,剩余區(qū)間的長度和為,第次操作去掉個(gè)區(qū)間長為,剩余區(qū)間的長度和為,所以第次操作后剩余的各區(qū)間長度和為;【小問3詳解】解:設(shè)定義區(qū)間,則區(qū)間長度為1,由(2)可得第次操作剩余區(qū)間的長度和為,要使得“康托三分集”的各區(qū)間的長度之和不大于,則滿足,即,即,因?yàn)闉檎麛?shù),所以的最小值為.18、;【解析】將條件①②③轉(zhuǎn)化為的形式,列方程組,并求解,寫出的通項(xiàng)公式,從而表示出,利用裂項(xiàng)相消法求和.【詳解】選①:設(shè)等差數(shù)列首項(xiàng)為,公差為,因?yàn)?,,所以,所以,所以,所以選②:設(shè)等差數(shù)列首項(xiàng)為,公差為,因?yàn)?,,所以,所以,所以,所以選③:設(shè)等差數(shù)列首項(xiàng)為,公差為,因?yàn)?,,所以,所以,所以,所以【點(diǎn)睛】數(shù)列求和的方法技巧(1)倒序相加:用于等差數(shù)列、與二項(xiàng)式系數(shù)、對稱性相關(guān)聯(lián)的數(shù)列的求和(2)錯(cuò)位相減:用于等差數(shù)列與等比數(shù)列的積數(shù)列的求和(3)分組求和:用于若干個(gè)等差或等比數(shù)列的和或差數(shù)列的求和19、(1)(2),【解析】(1)根據(jù)導(dǎo)數(shù)的幾何意義即可求解;(2)根據(jù)導(dǎo)數(shù)的正負(fù)判斷f(x)的單調(diào)性,根據(jù)其單調(diào)性即可求最大值和最小值.【小問1詳解】,切點(diǎn)為(1,-2),∵,∴切線斜率,切線方程為;【小問2詳解】令,解得,1200極大值極小值2∵,,∴當(dāng)時(shí),,.20、(1).(2)或【解析】(1)根據(jù)題意,有A、B的坐標(biāo)可得線段AB的中點(diǎn)即C的坐標(biāo),求出AB的長即可得圓C的半徑,由圓的標(biāo)準(zhǔn)方程即可得答案;(2)根據(jù)題意,由直線與圓的位置關(guān)系可得點(diǎn)C到直線x﹣my+1=0的距離d,結(jié)合點(diǎn)到直線的距離公式可得,解可得m的值,即可得答案【詳解】(1)根據(jù)題意,點(diǎn),,則線段的中點(diǎn)為,即的坐標(biāo)為;圓是以線段為直徑的圓,則其半徑,圓的方程為.(2)根據(jù)題意,若直線被圓截得的弦長為,則點(diǎn)到直線的距離,又由,則有,變形可得:,解可得或【點(diǎn)睛】本題考查直線與圓的位置關(guān)系以及弦長的計(jì)算,涉及圓的標(biāo)準(zhǔn)方程,屬于基礎(chǔ)題21、(1);(2)證明見解析,定點(diǎn)和.【解析】(1)根據(jù)給定條件設(shè)出圓心坐標(biāo),再結(jié)合點(diǎn)到直線距離公式計(jì)算作答.(2)設(shè)點(diǎn),求出圓的方程,結(jié)合方程求出其定點(diǎn).【小問1詳解】因圓M的圓心在直線上,且圓心在第一象限,設(shè)圓心,且,圓心到直線的距離為,又由解得,從而,而,解得,所以圓M的方程為.【小問2詳解】由(1)知:,設(shè)點(diǎn),,設(shè)動(dòng)圓上任意一點(diǎn)當(dāng)與點(diǎn)P,M都不重合時(shí),,有,當(dāng)與點(diǎn)P,M之一重合時(shí),對應(yīng)為零向量,也成立,,,,化簡得:,由,解得或,所以以MP為直徑的圓必過定點(diǎn)和.【點(diǎn)睛】方法點(diǎn)睛:待定系數(shù)法求圓的方程,由題設(shè)條件,列出等式,求出相關(guān)量.一般地,與圓心和半徑有關(guān),選擇標(biāo)準(zhǔn)式,否則,選擇一般式.不論是哪種形式,都要確定三個(gè)獨(dú)立參

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論