版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
黑龍江省哈爾濱兆麟中學(xué)、阿城一中、尚志中學(xué)等六校2025屆高二上數(shù)學(xué)期末教學(xué)質(zhì)量檢測模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知雙曲線上的點(diǎn)到的距離為15,則點(diǎn)到點(diǎn)的距離為()A.7 B.23C.5或25 D.7或232.已知定義在R上的函數(shù)滿足,且當(dāng)時(shí),,則下列結(jié)論中正確的是()A. B.C. D.3.若將一個(gè)橢圓繞其中心旋轉(zhuǎn)90°,所得橢圓短軸兩頂點(diǎn)恰好是旋轉(zhuǎn)前橢圓的兩焦點(diǎn),這樣的橢圓稱為“對偶橢圓”,下列橢圓中是“對偶橢圓”的是()A. B.C. D.4.命題“?x∈R,|x|+x2≥0”的否定是()A.?x∈R,|x|+x2<0 B.?x∈R,|x|+x2≤0C.?x0∈R,|x0|+<0 D.?x0∈R,|x0|+≥05.設(shè)數(shù)列的前項(xiàng)和為,數(shù)列是公比為2的等比數(shù)列,且,則()A.255 B.257C.127 D.1296.已知拋物線的焦點(diǎn)坐標(biāo)是,則拋物線的標(biāo)準(zhǔn)方程為A. B.C. D.7.已知,則()A. B.1C. D.8.設(shè)拋物線的焦點(diǎn)為F,過點(diǎn)F且垂直于x軸的直線與拋物線C交于A,B兩點(diǎn),若,則()A1 B.2C.4 D.89.某班進(jìn)行了一次數(shù)學(xué)測試,全班學(xué)生的成績都落在區(qū)間內(nèi),其成績的頻率分布直方圖如圖所示,若該班學(xué)生這次數(shù)學(xué)測試成績的中位數(shù)的估計(jì)值為,則的值為()A. B.C. D.10.已知拋物線,則它的焦點(diǎn)坐標(biāo)為()A. B.C. D.11.已知函數(shù)的部分圖象與軸交于點(diǎn),與軸的一個(gè)交點(diǎn)為,如圖所示,則下列說法錯(cuò)誤的是()A. B.的最小正周期為6C.圖象關(guān)于直線對稱 D.在上單調(diào)遞減12.已知是定義在上的奇函數(shù),對任意兩個(gè)不相等的正數(shù)、都有,記,,,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.用一個(gè)平面去截半徑為5cm的球,截面面積是則球心到截面的距離為_______14.已知雙曲線的漸近線上兩點(diǎn)A,B的中點(diǎn)坐標(biāo)為(2,2),則直線AB的斜率是_________.15.已知數(shù)列的通項(xiàng)公式為,,設(shè)是數(shù)列的前n項(xiàng)和,若對任意都成立,則實(shí)數(shù)的取值范圍是__________.16.有一組數(shù)據(jù),其平均數(shù)為3,方差為2,則新的數(shù)據(jù)的方差為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)記是等差數(shù)列的前項(xiàng)和,若.(1)求數(shù)列的通項(xiàng)公式;(2)求使成立的的最小值.18.(12分)已知公差不為零的等差數(shù)列中,,且,,成等比數(shù)列.(Ⅰ)求數(shù)列的通項(xiàng)公式;(Ⅱ)若,求數(shù)列的前項(xiàng)和.19.(12分)已知函數(shù),.(1)若,求曲線在點(diǎn)處的切線方程;(2)若函數(shù)在上是減函數(shù),求實(shí)數(shù)的取值范圍.20.(12分)已知橢圓的離心率為,以坐標(biāo)原點(diǎn)為圓心,以橢圓M的短半軸長為半徑的圓與直線有且只有一個(gè)公共點(diǎn)(1)求橢圓M的標(biāo)準(zhǔn)方程;(2)過橢圓M的右焦點(diǎn)F的直線交橢圓M于A,B兩點(diǎn),過F且垂直于直線的直線交橢圓M于C,D兩點(diǎn),則是否存在實(shí)數(shù)使成立?若存在,求出的值;若不存在,請說明理由21.(12分)已知函數(shù)(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;(2)當(dāng)時(shí),若關(guān)于x的不等式恒成立,試求a的取值范圍22.(10分)已知拋物線的焦點(diǎn)也是橢圓的一個(gè)焦點(diǎn),如圖,過點(diǎn)任作兩條互相垂直的直線,,分別交拋物線于,,,四點(diǎn),,分別為,的中點(diǎn).(1)求的值;(2)求證:直線過定點(diǎn),并求出該定點(diǎn)的坐標(biāo);(3)設(shè)直線交拋物線于,兩點(diǎn),試求的最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】根據(jù)雙曲線的定義知,,即可求解.【詳解】由題意,雙曲線,可得焦點(diǎn)坐標(biāo),根據(jù)雙曲線的定義知,,而,所以或故選:D【點(diǎn)睛】本題主要考查了雙曲線的定義及其應(yīng)用,其中解答中熟記雙曲線的定義,列出方程是解答的關(guān)鍵,著重考查推理與運(yùn)算能力,屬于基礎(chǔ)題.2、B【解析】由可得,利用導(dǎo)數(shù)判斷函數(shù)在上的單調(diào)性,由此比較函數(shù)值的大小確定正確選項(xiàng).【詳解】∵∴,當(dāng)時(shí),,∴,故∴在內(nèi)單調(diào)遞增,又,∴,所以故選:B3、A【解析】由題意可得,所給的橢圓中的,的值求出的值,進(jìn)而判斷所給命題的真假【詳解】解:因?yàn)闄E圓短的軸兩頂點(diǎn)恰好是旋轉(zhuǎn)前橢圓的兩焦點(diǎn),即,即,中,,,所以,故,所以正確;中,,,所以,所以不正確;中,,,所以,所以不正確;中,,,所以,所以不正確;故選:4、C【解析】利用全稱命題的否定可得出結(jié)論.【詳解】由全稱命題的否定可知,命題“,”的否定是“,”.故選:C.5、C【解析】由題設(shè)可得,再由即可求值.【詳解】由數(shù)列是公比為2的等比數(shù)列,且,∴,即,∴.故選:C.6、D【解析】根據(jù)拋物線的焦點(diǎn)坐標(biāo)得到2p=4,進(jìn)而得到方程.【詳解】拋物線的焦點(diǎn)坐標(biāo)是,即p=2,2p=4,故得到方程為.故答案為D.【點(diǎn)睛】這個(gè)題目考查了拋物線的標(biāo)準(zhǔn)方程的求法,題目較為簡單.7、B【解析】先根據(jù)共軛復(fù)數(shù)的定義可得,再根據(jù)復(fù)數(shù)的運(yùn)算法則即可求出【詳解】因?yàn)?,所以故選:B8、C【解析】根據(jù)焦點(diǎn)弦的性質(zhì)即可求出【詳解】依題可知,,所以故選:C9、A【解析】根據(jù)已知條件可得出關(guān)于、的方程組,解出這兩個(gè)量的值,即可求得結(jié)果.【詳解】由題意有,得,又由,得,解得,,有故選:A.10、D【解析】將拋物線方程化標(biāo)準(zhǔn)形式后得到焦準(zhǔn)距,可得結(jié)果.【詳解】由得,所以,所以,所以拋物線的焦點(diǎn)坐標(biāo)為.故選:D.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:將拋物線方程化為標(biāo)準(zhǔn)形式是解題關(guān)鍵.11、D【解析】根據(jù)函數(shù)的圖象求出,再利用函數(shù)的性質(zhì)結(jié)合周期公式逆推即可求解.【詳解】因?yàn)楹瘮?shù)的圖象與軸交于點(diǎn),所以,又,所以,A正確;因?yàn)榈膱D象與軸的一個(gè)交點(diǎn)為,即,所以,又,解得,所以,所以,求得最小正周期為,B正確;,所以是的一條對稱軸,C正確;令,解得,所以函數(shù)在,上單調(diào)遞減,D錯(cuò)誤故選:D.12、A【解析】由題,可得是定義在上的偶函數(shù),且在上單調(diào)遞減,在上單調(diào)遞增,根據(jù)函數(shù)的單調(diào)性,即可判斷出的大小關(guān)系.【詳解】設(shè),由題,得,即,所以函數(shù)在上單調(diào)遞減,因?yàn)槭嵌x在R上的奇函數(shù),所以是定義在上的偶函數(shù),因此,,,即.故選:A【點(diǎn)睛】本題主要考查利用函數(shù)的單調(diào)性判斷大小的問題,其中涉及到構(gòu)造函數(shù)的運(yùn)用.二、填空題:本題共4小題,每小題5分,共20分。13、4cm【解析】根據(jù)圓面積公式算出截面圓的半徑,利用球的截面圓性質(zhì)與勾股定理算出球心到截面的距離【詳解】解:設(shè)截面圓的半徑為r,截面的面積是,,可得又球的半徑為5cm,根據(jù)球的截面圓性質(zhì),可得截面到球心的距離為故答案為:4cm【點(diǎn)睛】本題主要考查了球的截面圓性質(zhì)、勾股定理等知識,考查了空間想象能力,屬于基礎(chǔ)題14、##【解析】設(shè)出直線的方程,通過聯(lián)立直線的方程和漸近線的方程,結(jié)合中點(diǎn)的坐標(biāo)來求得直線的斜率.【詳解】雙曲線,,漸近線方程為,設(shè)直線的方程為,,由,由,所以,所以直線的斜率是.故答案為:15、【解析】化簡數(shù)列將問題轉(zhuǎn)化為不等式恒成立問題,再對n分奇數(shù)和偶數(shù)進(jìn)行討論,分別求解出的取值范圍,最后綜合得出結(jié)果.【詳解】根據(jù)題意,,.①當(dāng)n是奇數(shù)時(shí),,即對任意正奇數(shù)n恒成立,當(dāng)時(shí),有最小值1,所以.②當(dāng)n是正偶數(shù)時(shí),,即,又,故對任意正偶數(shù)n都成立,又隨n增大而增大,當(dāng)時(shí),有最小值,即,綜合①②可知.故答案為:.16、2【解析】由已知得,,然后計(jì)算的平均數(shù)和方差可得答案.【詳解】由已知得,,所以,.故答案為:2.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)4【解析】(1)根據(jù)題意得,解方程得,進(jìn)而得通項(xiàng)公式;(2)由題知,進(jìn)而解不等式得或,再根據(jù)即可得答案.【小問1詳解】設(shè)等差數(shù)列的公差為,由得=0,由題意知,,解得,所以d=2所以.小問2詳解】解:由(1)可得,由可得,即,解得或,因?yàn)?,所以,正整?shù)的最小值為.18、(1)(2)【解析】(Ⅰ)將數(shù)列中的項(xiàng)用和表示,根據(jù)等比數(shù)列的性質(zhì)可得到關(guān)于的一元二次方程可求得的值,即可得到數(shù)列的通項(xiàng)公式;(Ⅱ)根據(jù)(Ⅰ)可求得的通項(xiàng)公式,用分組求和法可得其前項(xiàng)和.試題解析:(Ⅰ)設(shè)等差數(shù)列的公差為,因,且,,成等比數(shù)列,即,,成等比數(shù)列,所以有,即,解得或(舍去),所以,,數(shù)列的通項(xiàng)公式為.(Ⅱ)由(Ⅰ)知,所以.點(diǎn)睛:本題主要考查了等差數(shù)列,等比數(shù)列的概念,以及數(shù)列的求和,屬于高考中??贾R點(diǎn),難度不大;常見的數(shù)列求和的方法有公式法即等差等比數(shù)列求和公式,分組求和類似于,其中和分別為特殊數(shù)列,裂項(xiàng)相消法類似于,錯(cuò)位相減法類似于,其中為等差數(shù)列,為等比數(shù)列等.19、(1).(2).【解析】分析:(1)由和可由點(diǎn)斜式得切線方程;(2)由函數(shù)在上是減函數(shù),可得在上恒成立,,由二次函數(shù)的性質(zhì)可得解.詳解:(1)當(dāng)時(shí),所以,所以曲線在點(diǎn)處的切線方程為.(2)因?yàn)楹瘮?shù)在上是減函數(shù),所以在上恒成立.做法一:令,有,得故.實(shí)數(shù)的取值范圍為做法二:即在上恒成立,則在上恒成立,令,顯然在上單調(diào)遞減,則,得實(shí)數(shù)的取值范圍為點(diǎn)睛:導(dǎo)數(shù)問題經(jīng)常會(huì)遇見恒成立的問題:(1)根據(jù)參變分離,轉(zhuǎn)化為不含參數(shù)的函數(shù)的最值問題;(2)若就可討論參數(shù)不同取值下的函數(shù)的單調(diào)性和極值以及最值,最終轉(zhuǎn)化為,若恒成立;(3)若恒成立,可轉(zhuǎn)化為(需在同一處取得最值).20、(1)(2)存在,【解析】(1)求出后可得橢圓的標(biāo)準(zhǔn)方程.(2)設(shè)直線,聯(lián)立直線方程和橢圓方程,消元后利用韋達(dá)定理可用表示,從而可求的值.【小問1詳解】據(jù)題意,得,∴,∴所求橢圓M的標(biāo)準(zhǔn)方程為【小問2詳解】據(jù)(1)求解知,點(diǎn)F坐標(biāo)為若直線的斜率存在,且不等于0,設(shè)直線據(jù)得設(shè),則,∴同理可求知,∴,∴,即此時(shí)存滿足題設(shè);若直線的斜率不存在,則;若直線的斜率為0,則,此時(shí)若,則綜上,存在實(shí)數(shù),且使21、(1)的減區(qū)間為,增區(qū)間為(2)【解析】(1)利用導(dǎo)數(shù)求得的單調(diào)區(qū)間.(2)利用分離參數(shù)法,結(jié)合構(gòu)造函數(shù)法以及導(dǎo)數(shù)求得的取值范圍.【小問1詳解】當(dāng)時(shí),,,所以在區(qū)間遞減;在區(qū)間遞增.所以的減區(qū)間為,增區(qū)間為.【小問2詳解】,恒成立.構(gòu)造函數(shù),,,構(gòu)造函數(shù),,所以在上遞增,,所以在上成立,所以,所以,即的取值范圍是.22、(1)(2)證明見解析,(3,0)(3)【解析】(1)求出橢圓的焦點(diǎn)坐標(biāo),從而可知拋物線的焦點(diǎn)坐標(biāo),進(jìn)而可得的值;(2)首先設(shè)出直線的方程,聯(lián)立直線與拋物線的方程,得到,坐標(biāo),令,可得直線過點(diǎn),再證明當(dāng),,,三點(diǎn)共線即可;(3)設(shè)出的直線方程,聯(lián)立直線與拋物線的方程,利用韋達(dá)定理找出根
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 聯(lián)網(wǎng)報(bào)警服務(wù)合同范例
- 水庫改造施工合同范例
- 4s店買賣合同范例
- 務(wù)工合同范例建筑
- 米油鹽購銷合同范例
- 蓋板合同范例
- 交運(yùn)股合同范例
- 喜相逢購車合同范例
- 銅陵學(xué)院《機(jī)械優(yōu)化設(shè)計(jì)及應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷
- 通化醫(yī)藥健康職業(yè)學(xué)院《痕跡信息系統(tǒng)應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷
- 雨水回用池專項(xiàng)施工方案
- 外研社英語教材(一年級起點(diǎn))二年級上冊句型總結(jié)
- 國內(nèi)外建筑節(jié)能現(xiàn)狀及發(fā)展
- CNAS授權(quán)簽字人考核資料講課文檔
- 杉木防水施工方案
- 新能源電動(dòng)汽車參考文獻(xiàn)有哪些
- 煤礦全員安全教育培訓(xùn)考試試卷+答案
- 國土資源調(diào)查與管理
- 液壓氣動(dòng)技術(shù)專題報(bào)告2000字
- GB 19517-2023國家電氣設(shè)備安全技術(shù)規(guī)范
- GRR-計(jì)數(shù)型(范例填寫)
評論
0/150
提交評論