版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆安徽省天長市關(guān)塘中學(xué)數(shù)學(xué)高二上期末綜合測試試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.觀察下列各式:,,,,,可以得出的一般結(jié)論是A.B.C.D.2.根據(jù)如下樣本數(shù)據(jù),得到回歸直線方程,則x345678y4.02.5-0.50.5-2.0-3.0A. B.C. D.3.設(shè)F是雙曲線的左焦點(diǎn),,P是雙曲線右支上的動點(diǎn),則的最小值為()A.5 B.C. D.94.已知拋物線上一點(diǎn)的縱坐標(biāo)為4,則點(diǎn)到拋物線焦點(diǎn)的距離為A.2 B.3C.4 D.55.設(shè)函數(shù)在定義域內(nèi)可導(dǎo),的圖像如圖所示,則導(dǎo)函數(shù)的圖象可能為()A. B.C. D.6.甲、乙、丙、丁、戊共5名同學(xué)進(jìn)行勞動技術(shù)比賽,決出第1名到第5名的名次.甲和乙去詢問成績,回答者對甲說:“很遺憾,你和乙都沒有得到冠軍.”對乙說:“你當(dāng)然不會是最差的.”從這兩個回答分析,5人的名次排列方式共有()種A.54 B.72C.96 D.1207.如圖,在四面體中,,,兩兩垂直,已知,,則直線與平面所成角的正弦值為()A. B.C. D.8.雙曲線:的一條漸近線與直線垂直,則它的離心率為()A. B.C. D.9.若圓與圓外切,則()A. B.C. D.10.下列數(shù)列中成等差數(shù)列的是()A. B.C. D.11.對于函數(shù),下列說法正確的是()A.的單調(diào)減區(qū)間為B.設(shè),若對,使得成立,則C.當(dāng)時,D.若方程有4個不等的實(shí)根,則12.“”是“方程為雙曲線方程”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.若恒成立,則______.14.九連環(huán)是中國的一種古老智力游對,它用九個圓環(huán)相連成串,環(huán)環(huán)相扣,以解開為勝,趣味無窮.中國的末代皇帝溥儀(1906-1967)也曾有一個精美的由九個翡翠繯相連的銀制的九連環(huán)(如圖).現(xiàn)假設(shè)有個圓環(huán),用表示按照某種規(guī)則解下個圓環(huán)所需的銀和翠玉制九連環(huán)最少移動次數(shù),且數(shù)列滿足,,則___________.15.設(shè)空間向量,且,則___________.16.已知在四面體ABCD中,,,則______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在三棱柱中,平面ABC,,,,點(diǎn)D,E分別在棱和棱上,且,,M為棱的中點(diǎn)(1)求證:;(2)求直線AB與平面所成角的正弦值18.(12分)已知函數(shù)的圖像為曲線,點(diǎn)、.(1)設(shè)點(diǎn)為曲線上在第一象限內(nèi)的任意一點(diǎn),求線段的長(用表示);(2)設(shè)點(diǎn)為曲線上任意一點(diǎn),求證:為常數(shù);(3)由(2)可知,曲線為雙曲線,請研究雙曲線的性質(zhì)(從對稱性、頂點(diǎn)、漸近線、離心率四個角度進(jìn)行研究).19.(12分)如圖1是直角梯形,以為折痕將折起,使點(diǎn)C到達(dá)的位置,且平面與平面垂直,如圖2(1)求異面直線與所成角的余弦值;(2)在棱上是否存在點(diǎn)P,使平面與平面的夾角為?若存在,則求三棱錐的體積,若不存在,則說明理由20.(12分)已知拋物線的焦點(diǎn)F,C上一點(diǎn)到焦點(diǎn)的距離為5(1)求C的方程;(2)過F作直線l,交C于A,B兩點(diǎn),若線段AB中點(diǎn)的縱坐標(biāo)為-1,求直線l的方程21.(12分)在平面直角坐標(biāo)系內(nèi),已知的三個頂點(diǎn)坐標(biāo)分別為(1)求邊垂直平分線所在的直線的方程;(2)若的面積為5,求點(diǎn)的坐標(biāo)22.(10分)已知拋物線:的焦點(diǎn)為,點(diǎn)在上,點(diǎn)在的內(nèi)側(cè),且的最小值為.(1)求的方程;(2)為坐標(biāo)原點(diǎn),點(diǎn)A在y軸正半軸上,點(diǎn)B,C為E上兩個不同的點(diǎn),其中B點(diǎn)在第四象限,且AB,互相垂直平分,求四邊形AOBC的面積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】1=12,2+3+4=32,3+4+5+6+7=52,4+5+6+7+8+9+10=72,…,由上述式子可以歸納:左邊每一個式子均有2n-1項(xiàng),且第一項(xiàng)為n,則最后一項(xiàng)為3n-2右邊均為2n-1的平方故選C點(diǎn)睛:歸納推理的一般步驟是:(1)通過觀察個別情況發(fā)現(xiàn)某些相同性質(zhì);(2)從已知的相同性質(zhì)中推出一個明確表達(dá)的一般性命題(猜想)2、B【解析】作出散點(diǎn)圖,由散點(diǎn)圖得出回歸直線中的的符號【詳解】作出散點(diǎn)圖如圖所示.由圖可知,回歸直線=x+的斜率<0,當(dāng)x=0時,=>0.故選B【點(diǎn)睛】本題考查了散點(diǎn)圖的概念,擬合線性回歸直線第一步畫散點(diǎn)圖,再由數(shù)據(jù)計算的值3、B【解析】由雙曲線的的定義可得,于是將問題轉(zhuǎn)化為求的最小值,由得出答案.【詳解】設(shè)雙曲線的由焦點(diǎn)為,且點(diǎn)A在雙曲線的兩支之間.由雙曲線的定義可得,即所以當(dāng)且僅當(dāng)三點(diǎn)共線時,取得等號.故選:B4、D【解析】拋物線焦點(diǎn)在軸上,開口向上,所以焦點(diǎn)坐標(biāo)為,準(zhǔn)線方程為,因?yàn)辄c(diǎn)A的縱坐標(biāo)為4,所以點(diǎn)A到拋物線準(zhǔn)線的距離為,因?yàn)閽佄锞€上的點(diǎn)到焦點(diǎn)的距離等于到準(zhǔn)線的距離,所以點(diǎn)A與拋物線焦點(diǎn)的距離為5.考點(diǎn):本小題主要考查應(yīng)用拋物線定義和拋物線上點(diǎn)的性質(zhì)拋物線上的點(diǎn)到焦點(diǎn)的距離,考查學(xué)生的運(yùn)算求解能力.點(diǎn)評:拋物線上的點(diǎn)到焦點(diǎn)的距離等于到準(zhǔn)線的距離,這條性質(zhì)在解題時經(jīng)常用到,可以簡化運(yùn)算.5、D【解析】根據(jù)函數(shù)的單調(diào)性得到導(dǎo)數(shù)的正負(fù),從而得到函數(shù)的圖象.【詳解】由函數(shù)的圖象可知,當(dāng)時,單調(diào)遞增,則,所以A選項(xiàng)和C選項(xiàng)錯誤;當(dāng)時,先增,再減,然后再增,則先正,再負(fù),然后再正,所以B選項(xiàng)錯誤.故選:D.【點(diǎn)睛】本題主要考查函數(shù)的單調(diào)性和導(dǎo)數(shù)的關(guān)系,意在考查學(xué)生對該知識的掌握水平,屬于基礎(chǔ)題.一般地,函數(shù)在某個區(qū)間可導(dǎo),,則在這個區(qū)間是增函數(shù);函數(shù)在某個區(qū)間可導(dǎo),,則在這個區(qū)間是減函數(shù).6、A【解析】根據(jù)題意,分2種情況討論:①、甲是最后一名,則乙可以為第二、三、四名,剩下的三人安排在其他三個名次,②、甲不是最后一名,甲乙需要排在第二、三、四名,剩下的三人安排在其他三個名次,由加法原理計算可得答案【詳解】根據(jù)題意,甲乙都沒有得到冠軍,而乙不是最后一名,分2種情況討論:①甲是最后一名,則乙可以為第二、三、四名,即乙有3種情況,剩下的三人安排在其他三個名次,有種情況,此時有種名次排列情況;②甲不是最后一名,甲乙需要排在第二、三、四名,有種情況,剩下的三人安排在其他三個名次,有種情況,此時有種名次排列情況;則一共有種不同的名次情況,故選:A7、D【解析】利用三線垂直建立空間直角坐標(biāo)系,將線面角轉(zhuǎn)化為直線的方向向量和平面的法向量所成的角,再利用空間向量進(jìn)行求解.【詳解】以,,所在直線為軸,軸,軸建立空間直角坐標(biāo)系(如圖所示),則,,,,,設(shè)平面的一個法向量為,則,即,令,則,,所以平面的一個法向量為;設(shè)直線與平面所成角為,則,即直線與平面所成角的正弦值為.故選:D.8、A【解析】先利用直線的斜率判定一條漸近線與直線垂直,求出,再利用雙曲線的離心率公式和進(jìn)行求解.【詳解】因?yàn)橹本€的斜率為,所以雙曲線的一條漸近線與直線垂直,所以,即,則雙曲線的離心率.故選:A.卷II(非選擇題9、C【解析】求得兩圓的圓心坐標(biāo)和半徑,結(jié)合兩圓相外切,列出方程,即可求解.【詳解】由題意,圓與圓可得,,因?yàn)閮蓤A相外切,可得,解得故選:C.10、C【解析】利用等差數(shù)列定義,逐一驗(yàn)證各個選項(xiàng)即可判斷作答.【詳解】對于A,,A不是等差數(shù)列;對于B,,B不是等差數(shù)列;對于C,,C是等差數(shù)列;對于D,,D不是等差數(shù)列.故選:C11、B【解析】函數(shù),,,,,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性以及極值,畫出圖象A.結(jié)合圖象可判斷出正誤;B.設(shè)函數(shù)的值域?yàn)?,函?shù),的值域?yàn)椋魧?,,使得成立,可得.分別求出,,即可判斷出正誤C.由函數(shù)在單調(diào)遞減,可得函數(shù)在單調(diào)遞增,由此即可判斷出正誤;D.方程有4個不等的實(shí)根,則,且時,有2個不等的實(shí)根,由圖象即可判斷出正誤;【詳解】函數(shù),,,,可得函數(shù)在上單調(diào)遞減,在上單調(diào)遞減,在上單調(diào)遞增,當(dāng)時,,由此作出函數(shù)的大致圖象,如圖示:A.由上述分析結(jié)合圖象,可得A不正確B.設(shè)函數(shù)的值域?yàn)?,函?shù),的值域?yàn)?,對,,.,,由,若對,,使得成立,則,所以,因此B正確C.由函數(shù)在單調(diào)遞減,可得函數(shù)在單調(diào)遞增,因此當(dāng)時,,即,因此C不正確;D.方程有4個不等的實(shí)根,則,且時,有2個不等的實(shí)根,結(jié)合圖象可知,因此D不正確故選:B12、C【解析】先求出方程表示雙曲線時滿足的條件,然后根據(jù)“小推大”的原則進(jìn)行判斷即可.【詳解】因方程為雙曲線方程,所以,所以“”是“方程為雙曲線方程”的充要條件.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】利用導(dǎo)數(shù)研究的最小值為,再構(gòu)造研究其最值,即可確定參數(shù)a的值.【詳解】令,則且,當(dāng)時,遞減;當(dāng)時,遞增;所以,即在上恒成立,令,則,當(dāng)時,遞增;當(dāng)時,遞減;所以,綜上,.故答案為:114、684【解析】利用累加法可求得的值.【詳解】當(dāng)且時,,所以,.故答案為:.15、1【解析】根據(jù),由求解.【詳解】因?yàn)橄蛄?,且,所以,即,解?故答案為:116、24【解析】由線段的空間關(guān)系有,應(yīng)用向量數(shù)量積的運(yùn)算律及已知條件即可求.【詳解】由題設(shè),可得如下四面體示意圖,則,又,,所以.故答案為:24三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)【解析】(1)由線面垂直、等腰三角形的性質(zhì)易得、,再根據(jù)線面垂直的判定及性質(zhì)證明結(jié)論;(2)構(gòu)建空間直角坐標(biāo)系,確定相關(guān)點(diǎn)坐標(biāo),進(jìn)而求的方向向量、面的法向量,應(yīng)用空間向量夾角的坐標(biāo)表示求直線與平面所成角的正弦值.【小問1詳解】在三棱柱中,平面,則平面,由平面,則,,則,又為的中點(diǎn),則,又,則平面,由平面,因此,.【小問2詳解】以為原點(diǎn),以,,為軸、軸、軸的正方向建立空間直角坐標(biāo)系,如圖所示,可得:,,,,,,.∴,,,,設(shè)為面的法向量,則,令得,設(shè)與平面所成角為,則,∴直線與平面所成角的正弦值為.18、(1);(2)具體見解析;(3)具體見解析.【解析】(1)由兩點(diǎn)間的距離公式求出距離,進(jìn)而將式子化簡即可;(2)求出,進(jìn)而討論兩種情況,然后結(jié)合基本不等式即可證明問題;(3)根據(jù)為雙曲線的焦點(diǎn),結(jié)合雙曲線的圖形特征即可求得該雙曲線的相關(guān)性質(zhì).【小問1詳解】由題意,.【小問2詳解】設(shè),由(1),.若x>0,則,當(dāng)且僅當(dāng)時取“=”,則,,所以.若x<0,則,當(dāng)且僅當(dāng)時取“=”,則,,所以.綜上:,為常數(shù).【小問3詳解】易知函數(shù):為奇函數(shù),則其圖象關(guān)于原點(diǎn)對稱.由(2)可知,曲線為雙曲線,為雙曲線的焦點(diǎn),則它關(guān)于直線對稱,還關(guān)于與垂直且過原點(diǎn)的直線對稱.,則,易得.綜上:雙曲線關(guān)于原點(diǎn)(0,0)對稱,且關(guān)于直線對稱.容易知道,直線是雙曲線C的漸近線.易知線段是雙曲線的實(shí)軸,將代入雙曲線解得頂點(diǎn):.于是實(shí)軸長為焦距為,則離心率.19、(1)(2)存在,靠近點(diǎn)D的三等分點(diǎn).【解析】(1)由題意建立空間直接坐標(biāo)系,求得的坐標(biāo),由求解;(2)假設(shè)棱上存在點(diǎn)P,設(shè),求得點(diǎn)p坐標(biāo),再求得平面PBE的一個法向量,由平面,得到為平面的一個法向量,然后由求解.【小問1詳解】解:因?yàn)?,所以四邊形ABCE是平行四邊形,又,所以四邊形ABCE是菱形,,又平面與平面垂直,又平面與平面=EB,所以平面,建立如圖所示空間直接坐標(biāo)系:則,所以,則,所以異面直線與所成角的余弦值是;【小問2詳解】假設(shè)棱上存在點(diǎn)P,使平面與平面的夾角為,設(shè),則,又,設(shè)平面PBE的一個法向量為,則,即,則,由平面,則為平面的一個法向量,所以,解得.20、(1);(2).【解析】(1)由拋物線的定義,結(jié)合已知有求p,寫出拋物線方程.(2)由題意設(shè)直線l為,聯(lián)立拋物線方程,應(yīng)用韋達(dá)定理可得,由中點(diǎn)公式有,進(jìn)而求k值,寫出直線方程.【詳解】(1)由題意知:拋物線的準(zhǔn)線為,則,可得,∴C的方程為.(2)由(1)知:,由題意知:直線l的斜率存在,令其方程為,∴聯(lián)立拋物線方程,得:,,若,則,而線段AB中點(diǎn)的縱坐標(biāo)為-1,∴,即,得,∴直線l的方程為.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:(1)利用拋物線定義求參數(shù),寫出拋物線方程;(2)由直線與拋物線相交,以及相交弦的中點(diǎn)坐標(biāo)值,應(yīng)用韋達(dá)定理、中點(diǎn)公式求直線斜率,并寫出直線方程.21、(1);(2)或【解析】(1)由題意直線的斜率公式,兩直線垂直的性質(zhì),求出的斜率,再用點(diǎn)斜式求直線的方程(2)根據(jù)的面積為5,求得點(diǎn)到直線的距離,再利用點(diǎn)到直線的距離公式,求得的值【詳解】解:(1),,的中點(diǎn)的坐標(biāo)為,又設(shè)邊的垂直平分線所在的直線的斜率為則,可得的方程為,即邊的垂直平分線所在的直線的方程(2)邊所在的直線方程為設(shè)邊上的高為即點(diǎn)到直線
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《食品保質(zhì)期規(guī)定》課件
- 《建設(shè)工程項(xiàng)目組織》課件
- 《家庭花卉養(yǎng)殖技巧》課件
- 經(jīng)濟(jì)全球化的趨勢教學(xué)課件
- 養(yǎng)老院老人康復(fù)設(shè)施維修人員表彰制度
- 《商務(wù)數(shù)據(jù)分析》課件-分析報告概述與結(jié)構(gòu)、撰寫原則與注意事項(xiàng)
- 《環(huán)境因素識別教材》課件
- 掛靠連續(xù)梁施工合同(2篇)
- 2024年數(shù)據(jù)中心運(yùn)維服務(wù)合同2篇
- 《燙傷護(hù)理》課件
- 新:中國兒童中樞性肌肉痙攣體外沖擊波治療臨床實(shí)踐指南
- 廣東開放大學(xué)2024秋《形勢與政策(專)》形成性考核參考答案
- 2024年《軍事理論》考試題庫附答案(含各題型)
- MOOC 馬克思主義基本原理-華東師范大學(xué) 中國大學(xué)慕課答案
- MOOC 大學(xué)生創(chuàng)新與創(chuàng)業(yè)實(shí)踐-西南交通大學(xué) 中國大學(xué)慕課答案
- 2024年《大學(xué)語文》期末考試復(fù)習(xí)題庫(含答案)
- 小學(xué)各年級 科技與創(chuàng)新 主題班會
- 繪畫里的中國:走進(jìn)大師與經(jīng)典學(xué)習(xí)通超星課后章節(jié)答案期末考試題庫2023年
- 機(jī)動車維修竣工出廠合格證樣式
- 全國國防教育示范學(xué)校形象標(biāo)識、金屬牌匾樣式
- 老師退休歡送會ppt課件
評論
0/150
提交評論