版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
PublicDisclosureAuthorizedPublicDisclosureAuthorized
PolicyResearchWorkingPaper10946
Education,SocialNorms,andtheMarriagePenalty
EvidencefromSouthAsia
MaurizioBussolo
JonahRexer
MargaretTriyana
WORLDBANKGROUP
SouthAsiaRegion
OfficeoftheChiefEconomistOctober2024
PolicyResearchWorkingPaper10946
Abstract
Agrowingliteratureattributesgenderinequalityinlabormarketoutcomesinparttothereductioninfemalelaborsupplyafterchildbirth,thechildpenalty.However,ifsocialnormsconstrainmarriedwomen’sactivitiesout-sidethehome,thenmarriagecanindependentlyreduceemployment,evenintheabsencechildbearing.Giventhecorrelationintimingbetweenchildbirthandmarriage,con-ventionalestimatesofchildpenaltieswillconflatethesetwoeffects.ThepaperstudiesthemarriagepenaltyinSouthAsia,acontextfeaturingconservativegendernormsand
lowfemalelaborforceparticipation.Thestudyintroducesasplit-sample,pseudo-panelapproachthatallowsforthesep-arationofmarriageandchildpenaltiesevenintheabsenceofindividual-levelpaneldata.Marriagereduceswomen’slaborforceparticipationinSouthAsiaby12percentagepoints,whereasthemarginalpenaltyofchildbearingissmall.Consistentwiththecentralrolesofbothopportu-nitycostsandsocialnorms,themarriagepenaltyissmalleramongcohortswithhighereducationandlessconservativegenderattitudes.
ThispaperisaproductoftheOfficeoftheChiefEconomist,SouthAsiaRegion.ItispartofalargereffortbytheWorldBanktoprovideopenaccesstoitsresearchandmakeacontributiontodevelopmentpolicydiscussionsaroundtheworld.PolicyResearchWorkingPapersarealsopostedontheWebat
/prwp
.Theauthorsmaybecontactedatmbussolo@,jrexer@,andmtriyana@.
ThePolicyResearchWorkingPaperSeriesdisseminatesthefindingsofworkinprogresstoencouragetheexchangeofideasaboutdevelopmentissues.Anobjectiveoftheseriesistogetthefindingsoutquickly,evenifthepresentationsarelessthanfullypolished.Thepaperscarrythenamesoftheauthorsandshouldbecitedaccordingly.Thefindings,interpretations,andconclusionsexpressedinthispaperareentirelythoseoftheauthors.TheydonotnecessarilyrepresenttheviewsoftheInternationalBankforReconstructionandDevelopment/WorldBankanditsaffiliatedorganizations,orthoseoftheExecutiveDirectorsoftheWorldBankorthegovernmentstheyrepresent.
ProducedbytheResearchSupportTeam
Education,socialnorms,andthemarriagepenalty:EvidencefromSouthAsia
MaurizioBussolo*JonahRexer*MargaretTriyana*
Keywords:Femalelaborforceparticipation,Genderinequality,Genderattitude
JELcodes:O10,J12,J16,J22
*OfficeoftheChiefEconomist’sOfficeforSouthAsia,theWorldBankGroup.TheauthorsthankFranziskaOhnsorge,SoniaBhalotra,RachelHeath,JamesRowe,andChristopherToweforhelpfulsuggestionsandAndyWeichengJiangandYuruiHuforexcellentresearchassistance.Thefindings,interpretations,andconclusionsexpressedinthispaperareentirelythoseoftheauthors.TheydonotnecessarilyrepresenttheviewsoftheWorldBankanditsaffiliatedorganizations,orthoseoftheExecutiveDirectorsoftheWorldBankorthegovernmentstheyrepresent.
2
1Introduction
Innearlyeverycountryintheworld,womenparticipateinthelaborforceatalowerratethanmen.Thepersistenceofthetraditionalspecializationofwomeninthehomeandmeninthemarketplaceisoneofthemostconsistentempiricalfactsinthesocialsciences.Muchofthisgaparisesfromthecostsofchild-rearing,whicharedisproportionatelybornebywomen.InAsia,womenspendaround5timesasmuchasmenonhouseholdtasks(VanderGaagetal.,2019).Thesharpdeclineinthelabormarketoutcomesofwomenrelativetomenaroundthebirthofthefirstchild–theso-called“childpenalty”–isacentraldriverofgenderinequalityinthelabormarketsacrosstheworld(Klevenetal.,2019).
However,childbearingtypicallyoccursconcurrentlywithotherkeyeventsoffamilyformation,inparticularmarriage.Conventionalestimatesofthechildpenaltyoftenignorethat,evenintheabsenceofchildren,theactofmarriageconfersnewresponsibilitiesandsocialnormsthatmayconstrainawoman’slaborsupply.Thesemaritalconstraints–the“marriagepenalty”–maybeconflatedwithchildbearingconstraintsinatypicalchildpenaltyestimation,giventhecorrelationintimebetweenthesetwoevents.
Insettingswheregenderrolesaredeeplyentrenched(Jayachandran,2020),marriedbutchildlesswomenmaybealreadyconfinedtodomesticresponsibilitiesevenwheretheyarenotyetconstrainedbytheburdensofchildcare.Thismarriagepenaltymayinpartexplainthemixedevidencegloballyontheimpactofaccesstochildcareonwomen’slaborsupply(Evansetal.,2021).InSouthAsiainparticular–aregionknownforbothconservativegendernormsandlowfemalelaborforceparticipation–theexperimentalevidenceinfavorofchildcareaccessisweak(Nandietal.,2020;Richardsonetal.,2018),suggestingchildcareresponsibilitiesarenotthemainconstrainttofemaleemployment.Similarly,Abrahametal.(2021)findnoevidenceofchildpenaltiesinIndia.Thisevidencepointstotheprimacyofmarriageoverchildpenaltiesinsettingswheregendernormsarestrict.
Still,muchlikethechildpenalty,themarriagepenaltymayhavediversecauses.Isamarriagepenaltyevidenceofconservativesocialnormsthatproscribemarriedwomen’sphysicalmobilityandworkoutsidethehome?Orisit,instead,areflectionoftheoptimalhouseholdspecializationbetweenmenandwomen,givenlimitedoutsideoptionsforwomen
3
inthelabormarket,asinBecker(1993).InthecontextofSouthAsia,thispaperanswerstwoquestions:(i)howcanthemarriagepenaltybeseparatedfromthechildpenaltyintheabsenceofindividual-levelpaneldata,and(ii)whatdrivesthemarriagepenaltyinSouthAsia.Doesitrepresentoptimallaborsupplyoramisallocationoftalent?
Toanswerthesequestions,weusemultipleroundsofthenationallyrepresentativeDemographicandHealthSurveys(DHS)fromfourSouthAsiancountries–Bangladesh,India,Maldives,andNepal.Separatelyestimatingchildandmarriagepenaltiespresentsseveralchallenges.First,sincethetimingofthesemajorlifeeventsisendogenous,naivecomparisonsinthelabormarketoutcomesbetweenmarriedandunmarriedwomenorparentsandthechildlessarecontaminatedbyomittedvariables.Recentworkonchildpenaltieshasusedevent-studymethodstosolvethisidentificationproblem(Klevenetal.,2021,2019,2024).
However,evenifadesignexploitssharpchangesinlaborsupplyaroundmarriageorchildbirthforidentification,thesetwoeventsarecorrelatedintimeforagivenindividual.Assuch,estimatesofthemarriagepenaltyareobscuredbythepresenceofchildren,andestimatesofthechildpenaltyarelikewisecapturingatleastinpartamarriagepenalty.Onesolutionistouseindividual-levelpaneldata,whereawoman’semploymentstatusisobservedbeforeandafterbothmarriageandchildbirth.Here,event-studytechniquesreadilyapply,augmentingstandardspecificationswithtimingindicatorsforbotheventssimultaneously,withmarriageandchildbirthcoefficientsseparatelyidentifiedbyvariationacrosswomeninthetiminggapbetweenthesetwoevents(Klevenetal.,2023).
However,accesstosuchrichpaneldataisrare,particularlyindevelopingcountrysettings.Weproposeamethodthatallowsfortheseparationofthemarriagepenaltyfromthechildpenaltyinrepeatedcross-sectionaldata.FollowingKlevenetal.(2023),wegeneratepseudo-panelsbymatchingwomensurveyedintheyearoftheirmarriagewithyoungerunmarriedwomenandoldermarriedwomentoconstructpre-andpost-marriagecounterfactualemploymenttrends.Ourcontributionistorestrictthepoolofpotentialpost-marriagematchestowomenwithoutchildren(the“nochild”sample)inordertoisolatethemarriagepenaltyfromthechildpenalty.Wethenre-runthismatchingprocedureontheunrestrictedsampleofwomenwherechildrenmaybepresent(the“ignore
4
child”sample).Comparingthesetwoquantitiesyieldstherelativemagnitudeofmarriagepenaltyaloneandthecombinedmarriageandchildpenalty.
WefindthatSouthAsianwomenreducetheirlaborforceparticipationby12percentagepoints(p.p.)followingmarriage,evenbeforechildbearing.Amongwomenwithchildren,thisrisesjust4p.pto16p.p.Assuch,75percentofthecombinedfamilyformationpenaltyisdrivenbymarriageitself,ratherthantheburdenofchildbearing,atleastinthefirstfiveyearsofmarriage.ThelargesteffectsareobservedinIndia,whilemoremutedeffectsareobservedinNepal,wherethemajorityofthecombinedpenaltyisdrivenbychildren.Dynamicevent-studyestimatesrevealflattrendsinemploymentstatusleadinguptothemarriagedate,andsharpdropsinemploymentinthefirstyearofmarriage.Thesetrendslendadditionalsupporttothenotionthattheseestimatesrepresentthecausaleffectofmarriage.Men,incontrast,enjoyamarriagepremium.Thispremiumdoesnotdependonthepresenceofchildren,consistentwiththeexistingliteratureshowingnochildpenaltiesformen(Klevenetal.,2023).
Themarriagepenaltymayrepresentanoptimalsolutiontoajointhouseholdmaximizationproblem.Ifwomenhavelimitedoutsideoptionsinthelabormarketrelativetotheirhusbands,thenspecializationinhome-basedtasksmightbeeconomicallyefficient,evenwithoutchildren.However,thevalueofwomen’shomeproductionisgreatlydiminishedwithoutchildren,suggestingaroleforsocialnormsindrivingthemarriagepenalty,particularlythosethatconstrainwomen’smobilityoutsidethehome(Anukritietal.,2020).Toadjudicatethesehypotheses,weuseheterogeneityanalysestotestthesourcesofthemarriagepenalty.DespitethefactthatgendernormsaremoreprogressiveinurbanareasinSouthAsia(Asheretal.,n.d.),wefindnosignificantdifferencebetweenurbanandruralmarriagepenalties.Thismayinpartreflectthenatureofurbanlabormarkets,whereemploymentopportunitiesareconcentratedoutsidethehome,addingadditionalconstraintstowomen’sparticipationinthecontextofconservativegenderattitudes(JalotaandHo,2024).
WethenturntotestingtheimpactofeducationandsocialnormsonmarriagepenaltiesinSouthAsiabyinteractingourpost-marriageindicatorwiththesecharacteristics.Wefindthateducatedwomenhavemuchsmallermarriagepenalties,withpost-secondary
5
educationerasingnearlyhalfthebaselinemarriagepenalty.Atthesametime,educatedhusbandsexertaquantitativelysimilareffect.Becauseofpositiveassortativemating,spousaleducationlevelsarehighlycorrelated,necessitatingtheinclusionofbothinteractionsinasingleregression.Inthismodel,thewife’seducationremainssignificantwhilethecoefficientonthehusband’seducationfallstozero.
Interpretingtheseresultsthroughthelensofourhypotheses,wearguethatawoman’seducationaffectsbothhouseholdgendernormsandheroutsideemploymentoptions.Incontrast,herhusband’seducationaffectshouseholdnorms,butdoesnotdirectlyaffectheremploymentprospects.Thissuggeststhatoutsideoptionsatleastinpartplayaroleindeterminingthemarriagepenalty.Finally,wedirectlytesttheroleofgenderattitudesbyinteractingthemarriageindicatorwithDHSmeasuresofhouseholdgenderattitudes.Wefindstrongevidencethatwomeninhouseholdswithmoreliberalgendernormsexperiencesmallermarriagepenalties.Theeffectsofeducationandsocialnormsappeartobeindependent,suggestingthatbothopportunitycostsandsocialnormsplayaroleindrivingthemarriagepenalty.
Wecontributetothelargeandgrowingliteratureongenderinequality.Thespecializationofwomeninthehomeandmeninthemarketplacerelatestowomen’srealorperceivedcomparativeadvantageinthehome(Becker,1973).Underspecialization,womeninvestinhomespecifichumancapital,whilemeninvestinmarketspecifichumancapital,raisingwages.Empirically,marriedmenhavesubstantiallyhigherwagesthanunmarriedmen,evenaftercontrollingforhumancapitalandjobcharacteristics(HerschandStratton,2000),suggestingthatspecializationthroughmarriagemakesmenmoreproductive.Ourevidenceonmenisconsistentwiththisliterature.Nevertheless,despitesubstantialattentiontogenderinequalityinrecentyears,thereislimitedcausalevidenceabouttheimpactofmarriageonwomen’slabormarketoutcomes.Thispaperbeginstofillthatgap.
Despiterisingwomen’shumancapitalandnarrowinggendergapsineducationacrosstheworld,femalelaborforceparticipationremainslowinmanypartsoftheworld,includingSouthAsia.Onepotentialexplanationforlowfemalelaborforceparticipationisgendernorms,whichcangeneratespousaldisagreementovertheprovisionofthehouseholdpublicgood(Bertrandetal.,2016;Fernandezetal.,2004).Childpenaltieshavebeendocumented
6
inhighandlowerincomesettingswithmagnitudesrangingfrom12to38percent(Kleven,2022;Klevenetal.,2019,2023).However,itcanplausiblybearguedthatwomenhaveacomparativeadvantageinchildcarerelativetotheirhusbands.Weshowthatevenbeforechildbirth,marriageitselfmightalreadyaffectfemalelaborforceparticipationinsettingswithdeeplyentrenchedgendernorms.Ourworkprovidessomeofthefirstevidenceonthemagnitudesofmarriagepenalties,ratherthanchildpenalties,andproposesamethodfordistinguishingbetweenthetwoincross-sectionaldata.Wealsodirectlylinkmarriagepenaltiestoskilllevels,outsideoptions,andsocialnorms.
Theremainderofthepaperisorganizedasfollows.Section2providesanoverviewofthedataandempiricalstrategy.Section3presentsourfindings,followedbyanexplorationofthedeterminantsofthemarriagepenaltyforwomeninSection4.Section5concludeswithpolicyimplications.
2DataandEmpiricalStrategy
2.1Data
WeusedatafromtheDemographicandHealthSurvey(DHS)fromBangladesh,India,Maldives,andNepalintheanalysis(TableA1).1Thesurveyswereconductedapproximatelyevery5yearsstartinginthe1990s.Thesenationallyrepresentativesurveysformarepeatedcrosssectionofreproductiveagewomenbetweentheagesof15and45.Themorerecentsurveysalsoincludedataonthemeninthehouseholds,sotherearefewerroundsofdataformen.Thefinalsamplecovers1,780,854womenand389,313menresidinginaround650,000householdsinalllevel1administrativeareasofthe4countries.
Thesurveysincludeage,education,urbanresidence,employmentstatus,andmaritalstatus.Forwomen,thesurveysincludeageatcohabitation,whichweuseastheageatmarriage,andbirthhistory,whichincludesthetimingofthefirstbirth.Importantly,thesesurveyscontaincompletehouseholdrosterswithdataonemploymentstatusforbothmarried
andunmarriedwomen,whichwillbeessentialtothepseudo-panelapproachbelow.
1OthercountriesinSouthAsiaareexcludedbecausetheDHSdatalacksufficientinformationonemploymentstatusforbothmarriedandunmarriedwomen.
7
MorerecentroundsoftheDHSalsoincludequestionsondecisionmakingandattitudetowarddomesticviolence.Thedecisionmakingquestionsincludewhetherornotwomenareinvolvedindecisionsontheirownhealthcare,purchases,andvisitstofamily.Thedecisionmakingindexisthesumofallthedecisionmakingitemsinwhichthewomanisinvolvedindividuallyorjointly.Ahigherindexsuggestshigherdecisionmakingpowerforwomen.Thequestionsonattitudetowarddomesticviolenceincludewhetheritwouldbejustifiedforahusbandtobeathiswifeifshegoesoutwithouttellingherhusband,neglectsthechildren,argueswithherhusband,refusessex,andburnsthefood.Theindexfortheattitudetowarddomesticviolenceisthesumofalltheitemswithwhichthewomanagrees.Ahigherindexsuggestsahigheracceptanceofdomesticviolence.
2.2Empiricalstrategy
2.2.1Estimation
Weuseaneventstudyapproachbasedonsharpchangesinwomen’slabormarketoutcomesobservedaroundthetimeofmarriage,t=0,forindividualsatageaobservedincalendaryeary.Ideally,theestimationusesindividual-levelpaneldata,inwhichcaserelativetimeindicatorsformarriageandchildbirthcanbeincludedsimultaneously,alongwithindividualandyearfixedeffects,inasingleevent-studyregressionwherelabormarketparticipationistheoutcomeKlevenetal.(2023).
However,intheabsenceofsuchdata,followingKleven(2022),crosssectionaldatacanbeusedtocreatepseudo-paneldata.Formarriedindividuals,weobservetheageofmarriage,andthereforetheirlocationthepost-marriageeventspace,t≥0.Forunmarriedindividuals,wecannotobservetheirtimingofmarriage,andthereforeonlyobservethattheyareinthepre-marriageeventspace,t<0,butnottheirpreciselocationinthisspace.Thepseudo-panelapproachmatchesmarriedwomentounmarriedwomenwiththesamedemographiccharacteristicstoformapre-marriagecounterfactualestimateoftheoutcome,transformingthecrosssectionaldataintoapseudo-panelacrossthepreandpost-marriageeventspaces. Specifically,womaniisobservedintheyearofhermarriaget=0incalendaryearyatagea,withdemographiccharacteristicsXi.Sheismatchedtoasurrogateobservationinthe
8
pre-marriageperiod,anunmarriedwomanjobservedinyeary?nwithagea?nandthesameobservedcharacteristicsXi=Xj.Then,foreachnupto5,thematchesatt?nareusedtoconstructthepre-marriagecounterfactualatthatperiod.Tomaximizethesample,wematchonaparsimonioussetofcharacteristics,includingthelevelofeducationandruralorurbanresidence.
Asimilarprocedureisthenappliedtowomenkinthepostmarriageeventspace,whoareobservedinyatt+nfornfrom1to5.Forthesepost-marriagematches,weadditionallyrequirethattheageatmarriageisthesameasindexwomani.Accordingly,apseudo-panelisconstructedforwomanitogeneratecounterfactualemploymentlevelsfor5yearsbeforeandaftermarriage.Furthermore,womanirepresentsallofthewomenwithXiobservedatt=0iny,whoenterhercohortas“referencewomen”andarematchedwiththesamecounterfactualwomenjandk.Wellcallthesegroups,indexedc,“marriagecohorts.”
Thesemarriagecohortsarethencollapsedattheeventyear-cohortleveltoobtainaveragelabormarketoutcomesforeachcohortforfiveyearspreandpostmarriage,aswellascohortcharacteristics.Theprocedureisthenrepeatedonthesampleofmen.Amarriagecohortc,then,isathree-elementvector,definedbyanageofmarriage,arural-urbanindicator,andaneducationlevel.Withineachcohort,ageaandbirthyear(birthcohort)bvarywithevent-timetbyconstruction,giventhatthepreandpostmarriagecomponentsofthemarriagecohortsareformedusingagesrelativetothereferencewoman.
Formarriagecohortcateventtimet,weestimatethefollowingregressionspecificationseparatelyforeachgenderg:
Y=αg+βgDct+δ+γ+ν(1)
WhereYistheoutcomeofinterest,thecohortaverageemploymentstatus.Dctisan
indicatorforpost-marriageeventperiods,andβgistheestimateofthemarriagepenaltyorpremium.Inourmainestimates,wepresentDctasacollapsedindicatorforallpost-marriageeventperiods,givingtheeventtime-averagedtreatmenteffect.However,wealsopresentevent-studyspecificationswhereweincludeleadsandlagsoftheeventyear(t?5uptot+5),allowingfordynamicpreandpostmarriagetrendsinemployment.
Inamarriagesinglecohort,thepreandpostmarriageindicatorsarecollinearwithage
9
and/orbirthcohortfixedeffectsδa,andγbsincethemarriagecohortmatcheswereselectedbytheiragerelativetothereferencewoman.However,whenmanymarriagecohortsarestackedwithinagivensurveyround,thenagefixedeffectscanbeincludedintheregression,sinceageofmarriagevariesacrossmarriagecohorts.Thatis,withinagivenagethereisstillvariationacrossmarriagecohortsinthelocationinevent-time.
However,ageandbirthcohortremaincollinearforallmarriagecohortsinagivensurveyround(country-year).However,whenmultiplesurveyroundspercountryarestacked,birth
cohortfixedeffectsγcanbeincludedaswellastheageeffects.Alternatively,totakeinto
accountmultiplesurveysacrosscountries,countryandsurveyyearfixedeffectscouldalsobeincluded.Note,however,thatincross-countrypooledsample,country-year,age,andbirthcohortfixedeffectsarecollinear,andsoincludinganytwoofthesethreeyieldsequivalentestimates.2
Thesamplesizeineachcountryvaries,sotheanalysisisweightedbymarriagecohortsizesothatitisrepresentativeattheindividuallevel,andprovidesidenticalcoefficientestimatestoestimationonthemicrodataina“stacked”model.Standarderrorsareclusteredatthemarriagecohortlevel.
Wealsoconsiderseveralheterogeneityanalysestoinvestigatethemechanismsunderlyingthemarriagepenalty.Toexploretheroleofurbanresidence,thesameanalysisasinequation1isconductedontheurbanandruralsamplesseparately.Toexploretheroleofeducation,theanalysisincludesaninteractiontermbetweenwomen’shighereducationandthepost-marriageindicator.Aseparateregressionisruntoanalyzetheroleofhusband’seducationbyincludinganinteractiontermbetweenhusband’shighereducationandthepost-marriageindicator.Highereducation(orhusband’shighereducation)takesthevalueoneifwomen(ortheirhusbands)havemorethansecondaryeducation.Finally,weexploretheroleofsocialnormssimilarly,interactingthepost-marriageindicatorwithamarriagecohort-averagedgenderattitudesindex.
2Inpractice,weincludebirth-cohortandcountry-yearfixedeffects.
10
2.2.2Identificationofthemarriagepenalty
Marriageandchildbirtharecorrelatedintimeacrossindividuals.Anaivepseudo-panelevent-studyregressionwouldlikelyconflatethesetwoeffects,particularlyastheshareofwomenwithchildrenriseswitht.Wethereforeproposeasplit-sampleapproachtoseparatethemarriagepenaltyfromthechildpenalty.Thefirstcase,the"nochildsample",restrictsthesampletowomenandmenwithoutchildren5yearsaftermarriagetoexploregendernorms.Thesecondcase,"theignorechildsample",matcheswomenandmeninthepostmarriageeventspacewithoutconsideringthepresenceofchildren.Thiscasecombinesthemarriageandchildpenalties(orpremium).
Ouranalysisreliesontwoidentificationassumptionstointerpretβasthecausaleffectofmarriageonemployment.First,theprecisetimingofmarriagemustbeuncorrelatedwithothershocksthatplausiblyinfluencelaborsupply.Oursplitsampleapproach,byconstruction,rulesoutchildbirthassuchaconfounder.However,otherconfounders,suchasrelocationinthecontextofpatrilocality,mightalsobecorrelatedwithmarriage.
Oursplit-sampleapproachalsogeneratesasecondidentificationassumption:thatthewomeninthe“nochild”samplearenotdiferentiallyselectedintheirpropensitytowork.Thisassumptionismorechallengingtosatisfy.Specifically,womenwhoremainchildlessuptot=5,particularlyinacontextofstrongpatriarchalnorms,arelikelytobethosewithahigherunobservedpropensitytowork.Assuch,thisintroducesatime-varyingbiasintheestimates,sincethisproblembecomesincreasinglysevereastrises:marriedwomenwithoutchildrenmanyyearsaftermarriageareparticularlyselected.However,sincethesewomenlikelyhaveahigherunobservedpropensitytowork,theresultsaswemovetowardtheendoftheeventwindowprobablyrepresentalowerboundonthetruemarriagepenalty.
2.2.3Summarystatistics
TableA2presentsmarriagecohort-levelsummarystatisticsforthewomeninthenochildandignorechildsamples.About20percentofwomeninthesampleareworking.Theaverageageofthecohortis20atthetimeofsurvey,almost40percentresideinurbanareas,almostathirdhavemorethansecondaryeducation.Theaverageageatmarriageis21andwomen
11
marrymenwhoareonaverage3yearsolderthanthem.Onaverage,womenparticipatein0.3decisionsoutofamaximumof5.Womenagreetoanaverageof0.2statementsoutof5onwhenitwouldbejustifiedforamantobeathiswife.Thesecharacteristicsaresimilaracrossthetwosamples.
TableA3presentsthesummarystatisticsforthemenineachsample.Thesizeofthemalesampleis75to80percentofthefemalesample,sincewomenofchildbearingageareover-sampledintheDHS.About53percentofthemeninthesampleareworking.Theaverageageofthecohortis21,ayearolderthanthewomen’saverageage.Aboutaquarterofmenhavemorethansecondaryeducation,slightlylowerthanthewomen’sshare.
3Results
3.1Mainresults
TheresultsofthemainmarriagepenaltyestimationareinTable1.Themodelcollapsestheyearlyeventstudyindicatorsintopre-andpost-marriageperiods,withthefullsetofbirthcohortandcountry-yearfixedeffects.Thepost-marriagetreatmentindicatoristheninteractedwithabinaryvariableindicatingwhetherthecohortsexcludewomenwithchildren(the“nochildsample”)orallowforchildbirth(the“ignorechildsample”).
PanelAshowstheresultsforwomenacrosstheregion(column1)andthenthefourconstituentcountries(columns2-5).Onaverage,marriagereduceslaborforceparticipationby11.7percentagepointsacrossSouthAsiaamongchildle
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 廠長(zhǎng)勞動(dòng)合同模板
- 裝修封窗合同模板
- 正規(guī)購(gòu)買(mǎi)新車(chē)輛合同模板
- 家政試工合同模板
- 工程采購(gòu)保修合同模板
- 防水購(gòu)買(mǎi)合同模板
- 餐飲灶臺(tái)售賣(mài)合同模板
- 2024年工業(yè)土地廠房轉(zhuǎn)讓協(xié)議
- 2024年上海家庭裝修合同
- 郵政保安合同模板
- 《服務(wù)業(yè)區(qū)位因素及其變化》優(yōu)質(zhì)公開(kāi)課人教版課件
- 燃?xì)夤こ淌┕そM織設(shè)計(jì)
- 消防安全常識(shí)明白紙
- 爐渣綜合處理項(xiàng)目的檢修維護(hù)方案
- 管理學(xué)原理(南大馬工程)
- 人才引進(jìn)考核評(píng)分表
- 壓力管道安裝許可規(guī)則-TSG D3001-2021
- 煤氣中毒事故應(yīng)急演練預(yù)案方案
- 體檢科醫(yī)療質(zhì)量控制工作計(jì)劃
- 國(guó)有公司總部禮品管理辦法 模版
- 口腔頜面部檢查課件
評(píng)論
0/150
提交評(píng)論