版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
福建省福州市2025屆數(shù)學高二上期末統(tǒng)考試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在棱長為1的正方體中,是線段上一個動點,則下列結論正確的有()A.不存在點使得異面直線與所成角為90°B.存在點使得異面直線與所成角為45°C.存在點使得二面角的平面角為45°D.當時,平面截正方體所得的截面面積為2.已知點、是雙曲線C:的左、右焦點,P是C左支上一點,若直線的斜率為2,且為直角三角形,則雙曲線C的離心率為()A.2 B.C. D.3.若的解集是,則等于()A.-14 B.-6C.6 D.144.已知雙曲線的兩個頂點分別為A、B,點P為雙曲線上除A、B外任意一點,且點P與點A、B連線的斜率為,若,則雙曲線的離心率為()A. B.C.2 D.35.已知圓M與直線與都相切,且圓心在上,則圓M的方程為()A. B.C. D.6.如圖,四棱錐中,底面是邊長為的正方形,平面,為底面內(nèi)的一動點,若,則動點的軌跡在()A.圓上 B.雙曲線上C.拋物線上 D.橢圓上7.某超市收銀臺排隊等候付款的人數(shù)及其相應概率如下:排隊人數(shù)01234概率0.10.16030.30.10.04則至少有兩人排隊的概率為()A.0.16 B.0.26C.0.56 D.0.748.已知數(shù)列滿足,則()A.32 B.C.1320 D.9.橢圓的兩焦點之間的距離為A. B.C. D.10.下列求導運算正確的是()A. B.C. D.11.已知數(shù)列是遞減的等比數(shù)列,的前項和為,若,,則=()A.54 B.36C.27 D.1812.已知雙曲線滿足,且與橢圓有公共焦點,則雙曲線的方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.點到拋物線上的點的距離的最小值為________.14.已知數(shù)列的前項和,則該數(shù)列的首項__________,通項公式__________.15.在平面直角坐標系中,雙曲線左、右焦點分別為,,點M是雙曲線右支上一點,,則雙曲線的漸近線方程為___________.16.已知函數(shù),,當時,不等式恒成立,則實數(shù)a的取值范圍為_______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)等差數(shù)列中,首項,且成等比數(shù)列(1)求數(shù)列的通項公式;(2)求數(shù)列的前項和18.(12分)已知數(shù)列是等差數(shù)列,其前n項和為,,,數(shù)列滿足(且),.(1)求和的通項公式;(2)求數(shù)列的前n項和.19.(12分)某企業(yè)為響應“安全生產(chǎn)”號召,將全部生產(chǎn)設備按設備安全系數(shù)分為A,兩個等級,其中等設備安全系數(shù)低于A等設備.企業(yè)定時對生產(chǎn)設備進行檢修,并將部分等設備更新成A等設備.據(jù)統(tǒng)計,2020年底該企業(yè)A等設備量已占全體設備總量的30%.從2021年開始,企業(yè)決定加大更新力度,預計今后每年將16%的等設備更新成A等設備,與此同時,4%的A等設備由于設備老化將降級成等設備.(1)在這種更新制度下,在將來的某一年該企業(yè)的A等設備占全體設備的比例能否超過80%?請說明理由;(2)至少在哪一年底,該企業(yè)的A等設備占全體設備的比例超過60%.(參考數(shù)據(jù):,,)20.(12分)求滿足下列條件的曲線的方程:(1)離心率為,長軸長為6的橢圓的標準方程(2)與橢圓有相同焦點,且經(jīng)過點的雙曲線的標準方程21.(12分)某保險公司根據(jù)官方公布的歷年營業(yè)收入,制成表格如下:表1年份2011201220132014201520162017201820192020年份序號x12345678910營業(yè)收入y(億元)0.529.3633.6132352571912120716822135由表1,得到下面的散點圖:根據(jù)已有的函數(shù)知識,某同學選用二次函數(shù)模型(b和a是待定參數(shù))來擬合y和x的關系.這時,可以對年份序號做變換,即令,得,由表1可得變換后的數(shù)據(jù)見表2.表2T149162536496481100Y0.529.3633.6132352571912120716822135(1)根據(jù)表中數(shù)據(jù),建立y關于t的回歸方程(系數(shù)精確到個位數(shù));(2)根據(jù)(1)中得到的回歸方程估計2021年的營業(yè)收入,以及營業(yè)收入首次超過4000億元的年份.附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為,.參考數(shù)據(jù):.22.(10分)如圖1是一張長方形鐵片,,,,分別是,中點,,分別在邊,上,且,將它卷成一個圓柱的側面圖2,使與重合,與重合.(1)求證:平面;(2)求幾何體的體積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由正方體的性質可將異面直線與所成的角可轉化為直線與所成角,而當為的中點時,可得,可判斷A;與或重合時,直線與所成的角最小可判斷B;當與重合時,二面角的平面角最小,通過計算可判斷C;過作,交于,交于點,由題意可得四邊形即為平面截正方體所得的截面,且四邊形是等腰梯形,然后利用已知數(shù)據(jù)計算即可判斷D.【詳解】異面直線與所成的角可轉化為直線與所成角,當為中點時,,此時與所成的角為90°,所以A錯誤;當與或重合時,直線與所成角最小,為60°,所以B錯誤;當與重合時,二面角的平面角最小,,所以,所以C錯誤;對于D,過作,交于,交于點,因為,所以、分別是、的中點,又,所以,四邊形即為平面截正方體所得的截面,因為,且,所以四邊形是等腰梯形,作交于點,所以,,所以梯形的面積為,所以D正確.故選:D.2、B【解析】根據(jù)雙曲線的定義和勾股定理利用即可得離心率.【詳解】∵直線的斜率為2,為直角三角形,∴,又,∴,.∵,即,∴故選:B.3、A【解析】由一元二次不等式的解集,結合根與系數(shù)關系求參數(shù)a、b,即可得.【詳解】∵的解集為,∴-5和2為方程的兩根,∴有,解得,∴.故選:A.4、C【解析】根據(jù)題意設設,根據(jù)題意得到,進而求得離心率【詳解】根據(jù)題意得到設,因為,所以,所以,則故選:C.5、A【解析】由題可設,結合條件可得,即求.【詳解】∵圓心在上,∴可設圓心,又圓M與直線與都相切,∴,解得,∴,即圓的半徑為1,圓M的方程為.故選:A.6、A【解析】根據(jù)題意,得到兩兩垂直,以點為坐標原點,分別以為軸,建立空間直角坐標系,設,由題意,得到,,再由得到,求出點的軌跡,即可得出結果.【詳解】由題意,兩兩垂直,以點為坐標原點,分別以為軸,建立如圖所示的空間直角坐標系,因為底面是邊長為的正方形,則,,因為為底面內(nèi)的一動點,所以可設,因此,,因為平面,所以,因此,所以由得,即,整理得:,表示圓,因此,動點的軌跡在圓上.故選:A.【點睛】本題主要考查立體幾何中的軌跡問題,靈活運用空間向量的方法求解即可,屬于常考題型.7、D【解析】利用互斥事件概率計算公式直接求解【詳解】由某超市收銀臺排隊等候付款的人數(shù)及其相應概率表,得:至少有兩人排隊的概率為:故選:D【點睛】本題考查概率的求法、互斥事件概率計算公式,考查運算求解能力,是基礎題8、A【解析】先令,求出,再當時,由,可得,然后兩式相比,求出,從而可求出,進而可求得答案【詳解】當時,,當時,由,可得,兩式相除可得,所以,所以,故選:A9、C【解析】根據(jù)題意,由于橢圓的方程為,故可知長半軸的長為,那么可知兩個焦點的坐標為,因此可知兩焦點之間的距離為,故選C考點:橢圓的簡單幾何性質點評:解決的關鍵是將方程變?yōu)闃藴适?,然后結合性質得到結論,屬于基礎題10、B【解析】根據(jù)基本初等函數(shù)的導數(shù)和求導法則判斷.【詳解】,,,,只有B正確.故選:B.【點睛】本題考查基本初等函數(shù)的導數(shù)公式,考查導數(shù)的運算法則,屬于基礎題.11、C【解析】根據(jù)等比數(shù)列的性質及通項公式計算求解即可.【詳解】由,解得或(舍去),,,故選:C12、A【解析】根據(jù)橢圓的標準方程求出,利用雙曲線,結合建立方程求出,,即可求出雙曲線的漸近線方程【詳解】橢圓的標準方程為,橢圓中的,雙曲線的焦點與橢圓的焦點相同,雙曲線中,雙曲線滿足,即又在雙曲線中,即,解得:,所以雙曲線的方程為,故選:A【點睛】關鍵點點睛:本題主要考查雙曲線方程的求解,根據(jù)橢圓和雙曲線的關系建立方程求出,,是解決本題的關鍵,考查學生的計算能力,屬于基礎題二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設出拋物線上點的坐標,利用兩點間距離公式,配方求出最小值.【詳解】設拋物線上的點坐標,則,當時,取得最小值,且最小值為.故答案為:14、①.;②..【解析】空一:利用代入法直接進行求解即可;空二:利用之間的關系進行求解即可.【詳解】空一:;空二:當時,,顯然不適合上式,所以,故答案為:;15、【解析】首先根據(jù)已知條件得到,再結合雙曲線的幾何性質求解即可.【詳解】如圖所示:,,所以,即.設,則,.即,,,,所以,漸近線方程為.故答案為:16、【解析】構造新函數(shù),求導根據(jù)導數(shù)大于等于零得到,構造,求導得到單調(diào)區(qū)間,計算函數(shù)最小值得到答案.【詳解】當時,不等式恒成立,所以,所以在上是增函數(shù),,則上恒成立,即在上恒成立,令,則,當時,,當時,,所以,所以故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據(jù)等比中項的性質結合等差數(shù)列的通項公式求出,進而得出數(shù)列的通項公式;(2)根據(jù)裂項相消求和法得出前項和為和.【小問1詳解】因為成等比數(shù)列,所以即,解得,所以;【小問2詳解】因為,,,18、(1),;(2).【解析】(1)根據(jù),列方程組即可求解數(shù)列的通項公式,根據(jù)可求數(shù)列的通項公式;(2)化簡,利用裂項相消法求該數(shù)列前n項和.【小問1詳解】設等差數(shù)列公差為d,∵,∴,∵公差,∴.由得,即,∴數(shù)列是首項為,公比為2的等比數(shù)列,∴;【小問2詳解】∵,∴,.19、(1)A等設備量不可能超過生產(chǎn)設備總量的80%,理由見解析;(2)在2025年底實現(xiàn)A等設備量超過生產(chǎn)設備總量的60%.【解析】(1)根據(jù)題意表示出2020年開始,經(jīng)過年后A等設備量占總設備量的百分比為,求出,根據(jù)的范圍進行判斷;(2)令>即可求解.【小問1詳解】記該企業(yè)全部生產(chǎn)設備總量為“1”,2020年開始,經(jīng)過年后A等設備量占總設備量的百分比為,則經(jīng)過1年即2021年底該企業(yè)A等設備量,,可得,又所以數(shù)列是以為首項,公比為的等比數(shù)列,可得,所以,顯然有,所以A等設備量不可能超過生產(chǎn)設備總量的80%.【小問2詳解】由,得.因為單調(diào)遞減,又,,所以在2025年底實現(xiàn)A等設備量超過生產(chǎn)設備總量的60%.20、(1)或;(2)【解析】(1)根據(jù)題意,由橢圓的幾何性質可得a、c的值,計算可得b的值,討論橢圓焦點的位置,求出橢圓的標準方程,即可得答案;(2)根據(jù)題意,求出橢圓的焦點坐標,進而可以設雙曲線的方程為,分析可得和,解可得a、b的值,即可得答案【詳解】解:(1)根據(jù)題意,要求橢圓的長軸長為6,離心率為,則,,解可得:,;則,若橢圓的焦點在x軸上,其方程為,若橢圓的焦點在y軸上,其方程為,綜合可得:橢圓的標準方程為或;(2)根據(jù)題意,橢圓的焦點為和,故要求雙曲線的方程為,且,則有,又由雙曲線經(jīng)過經(jīng)過點,則有,,聯(lián)立可得:,故雙曲線方程為:【點睛】本題考查橢圓、雙曲線的標準方程的求法,涉及橢圓、雙曲線的幾何性質,屬于基礎題21、(1);(2)估計2021年的營業(yè)收入約為2518億元,估計營業(yè)收入首次超過4000億元的年份為2025屆.【解析】(1)根據(jù)的公式,將題干中的數(shù)據(jù)代入,即得解;(2)代入,可估計2021年的營業(yè)收入;令,可求解的范圍,繼而得到的范圍,即得解【詳解】(1),,故回歸方程為.(2)2021年對應的t的值為121,營業(yè)收入,所以估計2021年的營業(yè)收入約為2518億元.依題意有,解得,故.因為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2021屆湖北省孝感市普通高中高一下學期期末考試數(shù)學試題
- 2025年建筑施工《春節(jié)節(jié)后復工復產(chǎn)》工作實施方案 合計3份
- 小學一年級20以內(nèi)數(shù)學口算練習題大全
- 學校聘用教師勞動合同書5篇
- 《肌組織課件》課件
- 你聽“你聽多美”命題作文寫作指導與精彩例文
- 湖南高考語文試題分析報告
- 《勞動定額知識》課件
- 商超連鎖店話務員工作總結
- 稅務籌劃與規(guī)劃實踐經(jīng)驗分享
- 部隊保密安全課件
- 園林施工技術創(chuàng)新-洞察分析
- 醫(yī)院窗簾、隔簾采購 投標方案(技術方案)
- 2025屆湖北省高三上學期12月聯(lián)考語文試題
- 國家開放大學《Photoshop圖像處理》章節(jié)測試題參考答案
- 期末檢測卷(試題)-2024-2025學年三年級上冊數(shù)學人教版
- 江蘇省南京市2023-2024學年高一上學期物理期末試卷(含答案)
- 新疆烏魯木齊市(2024年-2025年小學五年級語文)人教版階段練習(上學期)試卷及答案
- 2024年人教版八年級生物上冊期末考試卷(附答案)
- JGJ120-2012建筑基坑支護技術規(guī)程-20220807013156
- 2024年叉車租賃合同經(jīng)典版(四篇)
評論
0/150
提交評論