版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
云南省宜良第一中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試模擬試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知是雙曲線的左焦點(diǎn),,是雙曲線右支上的動(dòng)點(diǎn),則的最小值為()A.9 B.8C.7 D.62.如圖,面積為的正方形中有一個(gè)不規(guī)則的圖形,可按下面方法估計(jì)的面積:在正方形中隨機(jī)投擲個(gè)點(diǎn),若個(gè)點(diǎn)中有個(gè)點(diǎn)落入中,則的面積的估計(jì)值為,假設(shè)正方形的邊長為,的面積為,并向正方形中隨機(jī)投擲個(gè)點(diǎn),用以上方法估計(jì)的面積時(shí),的面積的估計(jì)值與實(shí)際值之差在區(qū)間內(nèi)的概率為附表:A. B.C. D.3.“”是“直線和直線垂直”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件4.為發(fā)揮我市“示范性高中”的輻射帶動(dòng)作用,促進(jìn)教育的均衡發(fā)展,共享優(yōu)質(zhì)教育資源.現(xiàn)分派我市“示范性高中”的5名教師到,,三所薄弱學(xué)校支教,開展送教下鄉(xiāng)活動(dòng),每所學(xué)校至少分派一人,其中教師甲不能到學(xué)校,則不同分派方案的種數(shù)是()A.150 B.136C.124 D.1005.已知點(diǎn),,直線與線段相交,則實(shí)數(shù)的取值范圍是()A.或 B.或C. D.6.由于受疫情的影響,學(xué)校停課,同學(xué)們通過三種方式在家自主學(xué)習(xí),現(xiàn)學(xué)校想了解同學(xué)們對(duì)假期學(xué)習(xí)方式的滿意程度,收集如圖1所示的數(shù)據(jù);教務(wù)處通過分層抽樣的方法抽取4%的同學(xué)進(jìn)行滿意度調(diào)查,得到的數(shù)據(jù)如圖2.下列說法錯(cuò)誤的是()A.樣本容量為240B.若,則本次自主學(xué)習(xí)學(xué)生的滿意度不低于四成C.總體中對(duì)方式二滿意學(xué)生約為300人D.樣本中對(duì)方式一滿意的學(xué)生為24人7.若直線a,b是異面直線,點(diǎn)O是空間中不在直線a,b上的任意一點(diǎn),則()A.不存在過點(diǎn)O且與直線a,b都相交的直線B.過點(diǎn)O一定可以作一條直線與直線a,b都相交C.過點(diǎn)O可以作無數(shù)多條直線與直線a,b都相交D.過點(diǎn)O至多可以作一條直線與直線a,b都相交8.在三棱錐中,,D為上的點(diǎn),且,則()A. B.C. D.9.已知過點(diǎn)的直線與圓相切,且與直線平行,則()A.2 B.1C. D.10.函數(shù)在上單調(diào)遞增,則k的取值范圍是()A B.C. D.11.已知集合,,則()A. B.C. D.12.已知為偶函數(shù),且,則___________.二、填空題:本題共4小題,每小題5分,共20分。13.在空間直角坐標(biāo)系中,向量為平面ABC的一個(gè)法向量,其中,,則向量的坐標(biāo)為______14.橢圓與雙曲線有公共焦點(diǎn),設(shè)橢圓與雙曲線在第一象限內(nèi)交于點(diǎn),橢圓與雙曲線的離心率分別為為坐標(biāo)原點(diǎn),,則的取值范圍是___________.15.若橢圓W:的離心率是,則m=___________.16.若雙曲線的漸近線為,則其離心率的值為_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某微小企業(yè)員工的年齡分布莖葉圖如圖所示:(1)求該公司員工年齡的極差和第25百分位數(shù);(2)從該公司員工中隨機(jī)抽取一位,記所抽取員工年齡在區(qū)間內(nèi)為事件,所抽取員工年齡在區(qū)間內(nèi)為事件,判斷事件與是否互相獨(dú)立,并說明理由;18.(12分)已知點(diǎn)在拋物線()上,過點(diǎn)A且斜率為1直線與拋物線的另一個(gè)交點(diǎn)為B(1)求p的值和拋物線的焦點(diǎn)坐標(biāo);(2)求弦長19.(12分)如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點(diǎn).(1)證明:PB∥平面AEC(2)設(shè)二面角D-AE-C為60°,AP=1,AD=,求三棱錐E-ACD的體積20.(12分)某種機(jī)械設(shè)備隨著使用年限的增加,它的使用功能逐漸減退,使用價(jià)值逐年減少,通常把它使用價(jià)值逐年減少的“量”換算成費(fèi)用,稱之為“失效費(fèi)”.某種機(jī)械設(shè)備的使用年限(單位:年)與失效費(fèi)(單位:萬元)的統(tǒng)計(jì)數(shù)據(jù)如下表所示:使用年限(單位:年)1234567失效費(fèi)(單位:萬元)2.903.303.604.404.805.205.90(1)由上表數(shù)據(jù)可知,可用線性回歸模型擬合與關(guān)系.請(qǐng)用相關(guān)系數(shù)加以說明;(精確到0.01)(2)求出關(guān)于的線性回歸方程,并估算該種機(jī)械設(shè)備使用8年的失效費(fèi)參考公式:相關(guān)系數(shù)線性回歸方程中斜率和截距最小二乘估計(jì)計(jì)算公式:,參考數(shù)據(jù):,,21.(12分)如圖,在四面體ABCD中,,平面ABC,點(diǎn)M為棱AB的中點(diǎn),,(1)證明:;(2)求平面BCD和平面DCM夾角的余弦值22.(10分)已知:在四棱錐中,底面為正方形,側(cè)棱平面,點(diǎn)為中點(diǎn),.(1)求證:平面平面;(2)求直線與平面所成角大小;(3)求點(diǎn)到平面的距離.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】由雙曲線方程求出,再根據(jù)點(diǎn)在雙曲線的兩支之間,結(jié)合可求得答案【詳解】由,得,則,所以左焦點(diǎn)為,右焦點(diǎn),則由雙曲線的定義得,因?yàn)辄c(diǎn)在雙曲線的兩支之間,所以,所以,當(dāng)且僅當(dāng)三點(diǎn)共線時(shí)取等號(hào),所以的最小值為9,故選:A2、D【解析】每個(gè)點(diǎn)落入中的概率為,設(shè)落入中的點(diǎn)的數(shù)目為,題意所求概率為故選D3、A【解析】因?yàn)橹本€和直線垂直,所以或,再根據(jù)充分必要條件的定義判斷得解.【詳解】因?yàn)椤爸本€和直線垂直,所以或.當(dāng)時(shí),直線和直線垂直;當(dāng)直線和直線垂直時(shí),不一定成立.所以是直線和直線垂直的充分不必要條件,故選:A4、D【解析】對(duì)甲所在組的人數(shù)分類討論即得解.【詳解】當(dāng)甲一個(gè)人去一個(gè)學(xué)校時(shí),有種;當(dāng)甲所在的學(xué)校有兩個(gè)老師時(shí),有種;當(dāng)甲所在的學(xué)校有三個(gè)老師時(shí),有種;所以共有28+48+24=100種.故選:D【點(diǎn)睛】方法點(diǎn)睛:排列組合常用方法有:簡單問題直接法、小數(shù)問題列舉法、相鄰問題捆綁法、不相鄰問題插空法、至少問題間接法、復(fù)雜問題分類法、等概率問題縮倍法.要根據(jù)已知條件靈活選擇方法求解.5、B【解析】由可求出直線過定點(diǎn),作出圖象,求出和,數(shù)形結(jié)合可得或,即可求解.【詳解】由可得:,由可得,所以直線:過定點(diǎn),作出圖象如圖所示:,,若直線與線段相交,則或,所以實(shí)數(shù)的取值范圍是或,故選:B6、B【解析】利用扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖可求出結(jié)果【詳解】選項(xiàng)A,樣本容量為,該選項(xiàng)正確;選項(xiàng)B,根據(jù)題意得自主學(xué)習(xí)的滿意率,錯(cuò)誤;選項(xiàng)C,樣本可以估計(jì)總體,但會(huì)有一定的誤差,總體中對(duì)方式二滿意人數(shù)約為,該選項(xiàng)正確;選項(xiàng)D,樣本中對(duì)方式一滿意人數(shù)為,該選項(xiàng)正確.故選:B【點(diǎn)睛】本題主要考查了命題真假的判斷,考查扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,屬于中檔題7、D【解析】設(shè)直線與點(diǎn)確定平面,由題意可得直線與平面相交或平行.分兩種情形,畫圖說明即可.【詳解】點(diǎn)是空間中不在直線,上的任意一點(diǎn),設(shè)直線與點(diǎn)確定平面,由題意可得,故直線與平面相交或平行.(1)若直線與平面相交(如圖1),記,①若,則不存在過點(diǎn)且與直線,都相交的直線;②若與不平行,則直線即為過點(diǎn)且與直線,都相交的直線.(2)若直線與平面平行(如圖2),則不存在過點(diǎn)且與直線,都相交的直線.綜上所述,過點(diǎn)至多有一條直線與直線,都相交.故選:D.8、B【解析】根據(jù)幾何關(guān)系以及空間向量的線性運(yùn)算即可解出【詳解】因?yàn)?,所以,即故選:B9、C【解析】先根據(jù)垂直關(guān)系設(shè)切線方程,再根據(jù)圓心到切線距離等于半徑列式解得結(jié)果.【詳解】因?yàn)榍芯€與直線平行,所以切線方程可設(shè)為因?yàn)榍芯€過點(diǎn)P(2,2),所以因?yàn)榕c圓相切,所以故選:C10、A【解析】對(duì)函數(shù)求導(dǎo),由于函數(shù)在給定區(qū)間上單調(diào)遞增,故恒成立.【詳解】由題意可得,,,,.故選:A11、B【解析】根據(jù)根式、分式的性質(zhì)求定義域可得集合A,解一元二次不等式求集合B,再由集合的交運(yùn)算求.【詳解】∵,,∴故選:B12、8【解析】由已知條件中的偶函數(shù)即可計(jì)算出結(jié)果,【詳解】為偶函數(shù),且,.故答案為:8二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)向量為平面ABC的一個(gè)法向量,由求解.【詳解】因?yàn)?,,所以,又因?yàn)橄蛄繛槠矫鍭BC的一個(gè)法向量,所以,解得,所以,故答案為:14、【解析】根據(jù)橢圓和雙曲線得定義求得,再根據(jù),可得,從而有,求出的范圍,根據(jù),結(jié)合基本不等式即可得出答案.【詳解】解:設(shè),則有,所以,即,又因?yàn)椋?,所以,即,則,由,得,所以,所以,則,由,得,因?yàn)椋?dāng)且僅當(dāng),即時(shí),取等號(hào),因?yàn)椋?,所以,即,所以的取值范圍?故答案為:.15、或【解析】按照橢圓的焦點(diǎn)在軸和在軸上兩種情況分別求解,可得所求結(jié)果【詳解】①當(dāng)橢圓的焦點(diǎn)在軸上時(shí),則有,由題意得,解得②當(dāng)橢圓的焦點(diǎn)在軸上時(shí),則有,由題意得,解得綜上可得或故答案為或【點(diǎn)睛】解答本題的關(guān)鍵有兩個(gè):一個(gè)是注意分類討論思想方法的運(yùn)用,注意橢圓焦點(diǎn)所在的位置;二是解題時(shí)要分清橢圓方程中各個(gè)參數(shù)的幾何意義,然后再根據(jù)離心率的定義求解16、【解析】利用漸近線斜率為和雙曲線的關(guān)系可構(gòu)造關(guān)于的齊次方程,進(jìn)而求得結(jié)果.【詳解】由漸近線方程可知:,即,,,(負(fù)值舍掉).故答案為:.【點(diǎn)睛】本題考查根據(jù)雙曲線漸近線方程求解離心率的問題,關(guān)鍵是利用漸進(jìn)線的斜率構(gòu)造關(guān)于的齊次方程.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)極差為;第25百分位數(shù)為(2)事件和相互獨(dú)立,理由見解析【解析】(1)根據(jù)定義直接計(jì)算極差和百分位數(shù)得到答案.(2)計(jì)算得到,,,即,得到答案.【小問1詳解】員工年齡的極差為,,故第25百分位數(shù)為.【小問2詳解】,,,故,故事件和相互獨(dú)立.18、(1),焦點(diǎn)坐標(biāo)(2)【解析】(1)將點(diǎn)的坐標(biāo)代入拋物線的方程,可求得的值,進(jìn)而可得拋物線的焦點(diǎn)坐標(biāo);(2)寫出直線的方程,聯(lián)立直線與拋物線方程求得交點(diǎn)坐標(biāo),利用兩點(diǎn)之間的距離公式即可求解.【小問1詳解】因?yàn)辄c(diǎn)在拋物線上,所以,即所以拋物線的方程為,焦點(diǎn)坐標(biāo)為;【小問2詳解】由已知得直線方程為,即由得,解得或所以,則19、【解析】(Ⅰ)連接BD交AC于O點(diǎn),連接EO,只要證明EO∥PB,即可證明PB∥平面AEC;(Ⅱ)延長AE至M連結(jié)DM,使得AM⊥DM,說明∠CMD=60°,是二面角的平面角,求出CD,即可三棱錐E-ACD的體積試題解析:(1)證明:連接BD交AC于點(diǎn)O,連接EO.因?yàn)锳BCD為矩形,所以O(shè)為BD中點(diǎn)又E為PD的中點(diǎn),所以EO∥PB.因?yàn)镋O?平面AEC,PB?平面AEC,所以PB∥平面AEC.(2)因?yàn)镻A⊥平面ABCD,ABCD為矩形,所以AB,AD,AP兩兩垂直如圖,以A為坐標(biāo)原點(diǎn),,AD,AP的方向?yàn)閤軸y軸z軸的正方向,||為單位長,建立空間直角坐標(biāo)系A(chǔ)-xyz,則D,E,=.設(shè)B(m,0,0)(m>0),則C(m,,0),=(m,,0)設(shè)n1=(x,y,z)為平面ACE的法向量,則即可取n1=.又n2=(1,0,0)為平面DAE的法向量,由題設(shè)易知|cos〈n1,n2〉|=,即=,解得m=.因?yàn)镋為PD的中點(diǎn),所以三棱錐E-ACD的高為.三棱錐E-ACD的體積V=××××=.考點(diǎn):二面角的平面角及求法;棱柱、棱錐、棱臺(tái)的體積;直線與平面平行的判定20、(1)答案見解析;(2);失效費(fèi)為6.3萬元【解析】(1)根據(jù)相關(guān)系數(shù)公式計(jì)算出相關(guān)系數(shù)可得結(jié)果;(2)根據(jù)公式求出和可得關(guān)于的線性回歸方程,再代入可求出結(jié)果.【詳解】(1)由題意,知,,∴結(jié)合參考數(shù)據(jù)知:因?yàn)榕c的相關(guān)系數(shù)近似為0.99,所以與的線性相關(guān)程度相當(dāng)大,從而可以用線性回歸模型擬合與的關(guān)系(2)∵,∴∴關(guān)于的線性回歸方程為,將代入線性回歸方程得萬元,∴估算該種機(jī)械設(shè)備使用8年的失效費(fèi)為6.3萬元21、(1)證明見解析(2)【解析】(1)根據(jù)題意,利用線面垂直的判定定理證明平面ABD即可;(2)以A為原點(diǎn),分別以,,方向?yàn)閤軸,y軸,z軸的正方向的空間直角坐標(biāo)系,分別求得平面BCD的一個(gè)法向量和平面DCM的一個(gè)法向量,然后由求解【小問1詳解】證明:∵平面ABC,∴,又,,∴平面ABD,∴【小問2詳解】如圖,以A為原點(diǎn),分別以,,的方向?yàn)閤軸,y軸,z軸的正方向的空間直角坐標(biāo)系,則,,,,,依題意,可得,設(shè)為平面BCD的一個(gè)法向量,則,不妨令,可得設(shè)為平面DCM的一個(gè)法向量,則,不妨令,可得,所以所以平面BCD和平面DCM的夾角的余弦值為22、(1)證明見解析;(2);(3).【解析】(1)以AB所在的直線為x軸,以AD所在的直線為y軸,以AP所在的直線為z軸,建立如圖所示的直角坐標(biāo)系,求出平面PCD的法向量為,平面的法向量為,即得證;(2)設(shè)直線與平面所成角為,利用向量法求解;(3)利用向量法求點(diǎn)到平面的距離.【小問
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度綠色建筑施工現(xiàn)場環(huán)保施工監(jiān)管合同3篇
- 2024年度高端摩托車租賃服務(wù)合作協(xié)議2篇
- 2024年武漢地區(qū)記賬代理業(yè)務(wù)協(xié)議樣本版B版
- 2024年度建筑工程施工合同綠色施工與節(jié)能要求3篇
- 漯河醫(yī)學(xué)高等??茖W(xué)?!恫牧吓c工藝(陶瓷)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年度水利工程圍板定制與水利設(shè)施保護(hù)協(xié)議3篇
- 2024年標(biāo)準(zhǔn)個(gè)人借款與連帶責(zé)任擔(dān)保協(xié)議版B版
- 2024年版智能交通系統(tǒng)研發(fā)與實(shí)施合同
- 2024年度實(shí)習(xí)培訓(xùn)生崗位實(shí)習(xí)協(xié)議書模板集錦2篇
- 2024年度室內(nèi)木門行業(yè)聯(lián)盟合作發(fā)展合同3篇
- 環(huán)境工程的課程設(shè)計(jì)---填料吸收塔
- 道路運(yùn)輸達(dá)標(biāo)車輛客車貨車核查記錄表
- 兒童詩兒童詩的欣賞和創(chuàng)作(課件)
- 人力資源管理工作思路(共3頁)
- 五筆常用字根表3746
- 新生兒肺氣漏
- 氣管切開(一次性氣切導(dǎo)管)護(hù)理評(píng)分標(biāo)準(zhǔn)
- 保安工作日志表
- 姜太公釣魚的歷史故事
- 數(shù)控車床實(shí)訓(xùn)圖紙國際象棋圖紙全套
- 電子政務(wù)概論教案
評(píng)論
0/150
提交評(píng)論