2025屆陜西省榆林市第十二中學(xué)高三數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測(cè)試題含解析_第1頁(yè)
2025屆陜西省榆林市第十二中學(xué)高三數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測(cè)試題含解析_第2頁(yè)
2025屆陜西省榆林市第十二中學(xué)高三數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測(cè)試題含解析_第3頁(yè)
2025屆陜西省榆林市第十二中學(xué)高三數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測(cè)試題含解析_第4頁(yè)
2025屆陜西省榆林市第十二中學(xué)高三數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測(cè)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025屆陜西省榆林市第十二中學(xué)高三數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測(cè)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫(xiě)在答題卡上,寫(xiě)在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知向量,,則與共線的單位向量為()A. B.C.或 D.或2.若sin(α+3π2A.-12 B.-133.如圖,在平行四邊形中,為對(duì)角線的交點(diǎn),點(diǎn)為平行四邊形外一點(diǎn),且,,則()A. B.C. D.4.設(shè)、,數(shù)列滿足,,,則()A.對(duì)于任意,都存在實(shí)數(shù),使得恒成立B.對(duì)于任意,都存在實(shí)數(shù),使得恒成立C.對(duì)于任意,都存在實(shí)數(shù),使得恒成立D.對(duì)于任意,都存在實(shí)數(shù),使得恒成立5.已知集合,則集合真子集的個(gè)數(shù)為()A.3 B.4 C.7 D.86.已知為兩條不重合直線,為兩個(gè)不重合平面,下列條件中,的充分條件是()A.∥ B.∥C.∥∥ D.7.已知為實(shí)數(shù)集,,,則()A. B. C. D.8.某幾何體的三視圖如右圖所示,則該幾何體的外接球表面積為()A. B.C. D.9.某四棱錐的三視圖如圖所示,記S為此棱錐所有棱的長(zhǎng)度的集合,則()A.B.C.D.10.已知隨機(jī)變量X的分布列如下表:X01Pabc其中a,b,.若X的方差對(duì)所有都成立,則()A. B. C. D.11.在中,是的中點(diǎn),,點(diǎn)在上且滿足,則等于()A. B. C. D.12.復(fù)數(shù)的虛部是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)函數(shù),若對(duì)于任意的,∈[2,,≠,不等式恒成立,則實(shí)數(shù)a的取值范圍是.14.設(shè)實(shí)數(shù)x,y滿足,則點(diǎn)表示的區(qū)域面積為_(kāi)_____.15.某校初三年級(jí)共有名女生,為了了解初三女生分鐘“仰臥起坐”項(xiàng)目訓(xùn)練情況,統(tǒng)計(jì)了所有女生分鐘“仰臥起坐”測(cè)試數(shù)據(jù)(單位:個(gè)),并繪制了如下頻率分布直方圖,則分鐘至少能做到個(gè)仰臥起坐的初三女生有_____________個(gè).16.若函數(shù)滿足:①是偶函數(shù);②的圖象關(guān)于點(diǎn)對(duì)稱.則同時(shí)滿足①②的,的一組值可以分別是__________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知離心率為的橢圓經(jīng)過(guò)點(diǎn).(1)求橢圓的方程;(2)薦橢圓的右焦點(diǎn)為,過(guò)點(diǎn)的直線與橢圓分別交于,若直線、、的斜率成等差數(shù)列,請(qǐng)問(wèn)的面積是否為定值?若是,求出此定值;若不是,請(qǐng)說(shuō)明理由.18.(12分)市民小張計(jì)劃貸款60萬(wàn)元用于購(gòu)買一套商品住房,銀行給小張?zhí)峁┝藘煞N貸款方式.①等額本金:每月的還款額呈遞減趨勢(shì),且從第二個(gè)還款月開(kāi)始,每月還款額與上月還款額的差均相同;②等額本息:每個(gè)月的還款額均相同.銀行規(guī)定,在貸款到賬日的次月當(dāng)天開(kāi)始首次還款(若2019年7月7日貸款到賬,則2019年8月7日首次還款).已知小張?jiān)摴P貸款年限為20年,月利率為0.004.(1)若小張采取等額本金的還款方式,現(xiàn)已得知第一個(gè)還款月應(yīng)還4900元,最后一個(gè)還款月應(yīng)還2510元,試計(jì)算小張?jiān)摴P貸款的總利息;(2)若小張采取等額本息的還款方式,銀行規(guī)定,每月還款額不得超過(guò)家庭平均月收入的一半,已知小張家庭平均月收入為1萬(wàn)元,判斷小張?jiān)摴P貸款是否能夠獲批(不考慮其他因素);(3)對(duì)比兩種還款方式,從經(jīng)濟(jì)利益的角度來(lái)考慮,小張應(yīng)選擇哪種還款方式.參考數(shù)據(jù):.19.(12分)在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),將曲線上每一點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的倍,縱坐標(biāo)不變,得到曲線,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,射線與曲線交于點(diǎn),將射線繞極點(diǎn)逆時(shí)針?lè)较蛐D(zhuǎn)交曲線于點(diǎn).(1)求曲線的參數(shù)方程;(2)求面積的最大值.20.(12分)在銳角中,,,分別是角,,所對(duì)的邊,的面積,且滿足,則的取值范圍是()A. B. C. D.21.(12分)已知三棱錐P-ABC(如圖一)的平面展開(kāi)圖(如圖二)中,四邊形ABCD為邊長(zhǎng)等于的正方形,和均為正三角形,在三棱錐P-ABC中:(1)證明:平面平面ABC;(2)若點(diǎn)M在棱PA上運(yùn)動(dòng),當(dāng)直線BM與平面PAC所成的角最大時(shí),求直線MA與平面MBC所成角的正弦值.22.(10分)在直角坐標(biāo)系中,曲線的參數(shù)方程為以為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,設(shè)點(diǎn)在曲線上,點(diǎn)在曲線上,且為正三角形.(1)求點(diǎn),的極坐標(biāo);(2)若點(diǎn)為曲線上的動(dòng)點(diǎn),為線段的中點(diǎn),求的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】

根據(jù)題意得,設(shè)與共線的單位向量為,利用向量共線和單位向量模為1,列式求出即可得出答案.【詳解】因?yàn)?,,則,所以,設(shè)與共線的單位向量為,則,解得或所以與共線的單位向量為或.故選:D.【點(diǎn)睛】本題考查向量的坐標(biāo)運(yùn)算以及共線定理和單位向量的定義.2、B【解析】

由三角函數(shù)的誘導(dǎo)公式和倍角公式化簡(jiǎn)即可.【詳解】因?yàn)閟inα+3π2=3故選B【點(diǎn)睛】本題考查了三角函數(shù)的誘導(dǎo)公式和倍角公式,靈活掌握公式是關(guān)鍵,屬于基礎(chǔ)題.3、D【解析】

連接,根據(jù)題目,證明出四邊形為平行四邊形,然后,利用向量的線性運(yùn)算即可求出答案【詳解】連接,由,知,四邊形為平行四邊形,可得四邊形為平行四邊形,所以.【點(diǎn)睛】本題考查向量的線性運(yùn)算問(wèn)題,屬于基礎(chǔ)題4、D【解析】

取,可排除AB;由蛛網(wǎng)圖可得數(shù)列的單調(diào)情況,進(jìn)而得到要使,只需,由此可得到答案.【詳解】取,,數(shù)列恒單調(diào)遞增,且不存在最大值,故排除AB選項(xiàng);由蛛網(wǎng)圖可知,存在兩個(gè)不動(dòng)點(diǎn),且,,因?yàn)楫?dāng)時(shí),數(shù)列單調(diào)遞增,則;當(dāng)時(shí),數(shù)列單調(diào)遞減,則;所以要使,只需要,故,化簡(jiǎn)得且.故選:D.【點(diǎn)睛】本題考查遞推數(shù)列的綜合運(yùn)用,考查邏輯推理能力,屬于難題.5、C【解析】

解出集合,再由含有個(gè)元素的集合,其真子集的個(gè)數(shù)為個(gè)可得答案.【詳解】解:由,得所以集合的真子集個(gè)數(shù)為個(gè).故選:C【點(diǎn)睛】此題考查利用集合子集個(gè)數(shù)判斷集合元素個(gè)數(shù)的應(yīng)用,含有個(gè)元素的集合,其真子集的個(gè)數(shù)為個(gè),屬于基礎(chǔ)題.6、D【解析】

根據(jù)面面垂直的判定定理,對(duì)選項(xiàng)中的命題進(jìn)行分析、判斷正誤即可.【詳解】對(duì)于A,當(dāng),,時(shí),則平面與平面可能相交,,,故不能作為的充分條件,故A錯(cuò)誤;對(duì)于B,當(dāng),,時(shí),則,故不能作為的充分條件,故B錯(cuò)誤;對(duì)于C,當(dāng),,時(shí),則平面與平面相交,,,故不能作為的充分條件,故C錯(cuò)誤;對(duì)于D,當(dāng),,,則一定能得到,故D正確.故選:D.【點(diǎn)睛】本題考查了面面垂直的判斷問(wèn)題,屬于基礎(chǔ)題.7、C【解析】

求出集合,,,由此能求出.【詳解】為實(shí)數(shù)集,,,或,.故選:.【點(diǎn)睛】本題考查交集、補(bǔ)集的求法,考查交集、補(bǔ)集的性質(zhì)等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.8、A【解析】

由三視圖知:幾何體為三棱錐,且三棱錐的一條側(cè)棱垂直于底面,結(jié)合直觀圖判斷外接球球心的位置,求出半徑,代入求得表面積公式計(jì)算.【詳解】由三視圖知:幾何體為三棱錐,且三棱錐的一條側(cè)棱垂直于底面,高為2,底面為等腰直角三角形,斜邊長(zhǎng)為,如圖:的外接圓的圓心為斜邊的中點(diǎn),,且平面,,的中點(diǎn)為外接球的球心,半徑,外接球表面積.故選:A【點(diǎn)睛】本題考查了由三視圖求幾何體的外接球的表面積,根據(jù)三視圖判斷幾何體的結(jié)構(gòu)特征,利用幾何體的結(jié)構(gòu)特征與數(shù)據(jù)求得外接球的半徑是解答本題的關(guān)鍵.9、D【解析】

如圖所示:在邊長(zhǎng)為的正方體中,四棱錐滿足條件,故,得到答案.【詳解】如圖所示:在邊長(zhǎng)為的正方體中,四棱錐滿足條件.故,,.故,故,.故選:.【點(diǎn)睛】本題考查了三視圖,元素和集合的關(guān)系,意在考查學(xué)生的空間想象能力和計(jì)算能力.10、D【解析】

根據(jù)X的分布列列式求出期望,方差,再利用將方差變形為,從而可以利用二次函數(shù)的性質(zhì)求出其最大值為,進(jìn)而得出結(jié)論.【詳解】由X的分布列可得X的期望為,又,所以X的方差,因?yàn)?所以當(dāng)且僅當(dāng)時(shí),取最大值,又對(duì)所有成立,所以,解得,故選:D.【點(diǎn)睛】本題綜合考查了隨機(jī)變量的期望?方差的求法,結(jié)合了概率?二次函數(shù)等相關(guān)知識(shí),需要學(xué)生具備一定的計(jì)算能力,屬于中檔題.11、B【解析】

由M是BC的中點(diǎn),知AM是BC邊上的中線,又由點(diǎn)P在AM上且滿足可得:P是三角形ABC的重心,根據(jù)重心的性質(zhì),即可求解.【詳解】解:∵M(jìn)是BC的中點(diǎn),知AM是BC邊上的中線,又由點(diǎn)P在AM上且滿足∴P是三角形ABC的重心∴又∵AM=1∴∴故選B.【點(diǎn)睛】判斷P點(diǎn)是否是三角形的重心有如下幾種辦法:①定義:三條中線的交點(diǎn).②性質(zhì):或取得最小值③坐標(biāo)法:P點(diǎn)坐標(biāo)是三個(gè)頂點(diǎn)坐標(biāo)的平均數(shù).12、C【解析】因?yàn)椋缘奶摬渴?,故選C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】試題分析:由題意得函數(shù)在[2,上單調(diào)遞增,當(dāng)時(shí)在[2,上單調(diào)遞增;當(dāng)時(shí)在上單調(diào)遞增;在上單調(diào)遞減,因此實(shí)數(shù)a的取值范圍是考點(diǎn):函數(shù)單調(diào)性14、【解析】

先畫(huà)出滿足條件的平面區(qū)域,求出交點(diǎn)坐標(biāo),利用定積分即可求解.【詳解】畫(huà)出實(shí)數(shù)x,y滿足表示的平面區(qū)域,如圖(陰影部分):則陰影部分的面積,故答案為:【點(diǎn)睛】本題考查了定積分求曲邊梯形的面積,考查了微積分基本定理,屬于基礎(chǔ)題.15、【解析】

根據(jù)數(shù)據(jù)先求出,再求出分鐘至少能做到個(gè)仰臥起坐的初三女生人數(shù)即可.【詳解】解:,.則分鐘至少能做到個(gè)仰臥起坐的初三女生人數(shù)為.故答案為:.【點(diǎn)睛】本題主要考查頻率分布直方圖,屬于基礎(chǔ)題.16、,【解析】

根據(jù)是偶函數(shù)和的圖象關(guān)于點(diǎn)對(duì)稱,即可求出滿足條件的和.【詳解】由是偶函數(shù)及,可取,則,由的圖象關(guān)于點(diǎn)對(duì)稱,得,,即,,可取.故,的一組值可以分別是,.故答案為:,.【點(diǎn)睛】本題主要考查了正弦型三角函數(shù)的性質(zhì),屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)是,【解析】

(1)根據(jù)及可得,再將點(diǎn)代入橢圓的方程與聯(lián)立解出,即可求出橢圓的方程;(2)可設(shè)所在直線的方程為,,,,將直線的方程與橢圓的方程聯(lián)立,用根與系數(shù)的關(guān)系求出,然后將直線、、的斜率、、分別用表示,利用可求出,從而可確定點(diǎn)恒在一條直線上,結(jié)合圖形即可求出的面積.【詳解】(1)因?yàn)闄E圓的離心率為,所以,即,又,所以,①因?yàn)辄c(diǎn)在橢圓上,所以,②由①②解得,所以橢圓C的方程為.(1)可知,,可設(shè)所在直線的方程為,由,得,設(shè),,,則,,設(shè)直線、、的斜率分別為、、,因?yàn)槿c(diǎn)共線,所以,即,所以,又,因?yàn)橹本€、、的斜率成等差數(shù)列,所以,即,化簡(jiǎn)得,即點(diǎn)恒在一條直線上,又因?yàn)橹本€方程為,且,所以是定值.【點(diǎn)睛】本題主要考查橢圓的方程,直線與橢圓的位置關(guān)系及橢圓中的定值問(wèn)題,屬于中檔題.18、(1)289200元;(2)能夠獲批;(3)應(yīng)選擇等額本金還款方式【解析】

(1)由題意可知,等額本金還款方式中,每月的還款額構(gòu)成一個(gè)等差數(shù)列,即可由等差數(shù)列的前n項(xiàng)和公式求得其還款總額,減去本金即為還款的利息;(2)根據(jù)題意,采取等額本息的還款方式,每月還款額為一等比數(shù)列,設(shè)小張每月還款額為元,由等比數(shù)列求和公式及參考數(shù)據(jù),即可求得其還款額,與收入的一半比較即可判斷;(3)計(jì)算出等額本息還款方式時(shí)所付出的總利息,兩個(gè)利息比較即可判斷.【詳解】(1)由題意可知,等額本金還款方式中,每月的還款額構(gòu)成一個(gè)等差數(shù)列,記為,表示數(shù)列的前項(xiàng)和,則,,則,故小張?jiān)摴P貸款的總利息為元.(2)設(shè)小張每月還款額為元,采取等額本息的還款方式,每月還款額為一等比數(shù)列,則,所以,即,因?yàn)?,所以小張?jiān)摴P貸款能夠獲批.(3)小張采取等額本息貸款方式的總利息為:,因?yàn)?,所以從?jīng)濟(jì)利益的角度來(lái)考慮,小張應(yīng)選擇等額本金還款方式.【點(diǎn)睛】本題考查了等差數(shù)列與等比數(shù)列求和公式的綜合應(yīng)用,數(shù)列在實(shí)際問(wèn)題中的應(yīng)用,理解題意是解決問(wèn)題的關(guān)鍵,屬于中檔題.19、(1)(為參數(shù));(2).【解析】

(1)根據(jù)伸縮變換結(jié)合曲線的參數(shù)方程可得出曲線的參數(shù)方程;(2)將曲線的方程化為普通方程,然后化為極坐標(biāo)方程,設(shè)點(diǎn)的極坐標(biāo)為,點(diǎn)的極坐標(biāo)為,將這兩點(diǎn)的極坐標(biāo)代入橢圓的極坐標(biāo)方程,得出和關(guān)于的表達(dá)式,然后利用三角恒等變換思想即可求出面積的最大值.【詳解】(1)由于曲線的參數(shù)方程為(為參數(shù)),將曲線上每一點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的倍,縱坐標(biāo)不變,得到曲線,則曲線的參數(shù)方程為(為參數(shù));(2)將曲線的參數(shù)方程化為普通方程得,化為極坐標(biāo)方程得,即,設(shè)點(diǎn)的極坐標(biāo)為,點(diǎn)的極坐標(biāo)為,將這兩點(diǎn)的極坐標(biāo)代入橢圓的極坐標(biāo)方程得,,的面積為,當(dāng)時(shí),的面積取到最大值.【點(diǎn)睛】本題考查參數(shù)方程、極坐標(biāo)方程與普通方程的互化,考查了伸縮變換,同時(shí)也考查了利用極坐標(biāo)方程求解三角形面積的最值問(wèn)題,要熟悉極坐標(biāo)方程所適用的基本類型,考查分析問(wèn)題和解決問(wèn)題的能力,屬于中等題.20、A【解析】

由正弦定理化簡(jiǎn)得,解得,進(jìn)而得到,利用正切的倍角公式求得,根據(jù)三角形的面積公式,求得,進(jìn)而化簡(jiǎn),即可求解.【詳解】由題意,在銳角中,滿足,由正弦定理可得,即,可得,所以,即,所以,所以,則,所以,可得,又由的面積,所以,則.故選:A.【點(diǎn)睛】本題主要考查了正弦定理、余弦定理的應(yīng)用,以及三角形的面積公式和正切的倍角公式的綜合應(yīng)用,著重考查了推理與運(yùn)算能力,屬于中檔試題.21、(1)見(jiàn)解析(2)【解析】

(1)設(shè)的中點(diǎn)為,連接.由展開(kāi)圖可知,,.為的中點(diǎn),則有,根據(jù)勾股定理可證得,則平面,即可證得平面平面.(2)由線面成角的定義可知是直線與平面所成的角,且,最大即為最短時(shí),即是的

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論