2025屆湖南省邵東縣第三中學高一數(shù)學第一學期期末聯(lián)考試題含解析_第1頁
2025屆湖南省邵東縣第三中學高一數(shù)學第一學期期末聯(lián)考試題含解析_第2頁
2025屆湖南省邵東縣第三中學高一數(shù)學第一學期期末聯(lián)考試題含解析_第3頁
2025屆湖南省邵東縣第三中學高一數(shù)學第一學期期末聯(lián)考試題含解析_第4頁
2025屆湖南省邵東縣第三中學高一數(shù)學第一學期期末聯(lián)考試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2025屆湖南省邵東縣第三中學高一數(shù)學第一學期期末聯(lián)考試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知的部分圖象如圖所示,則的表達式為A.B.C.D.2.已知a,b,,那么下列命題中正確的是()A.若,則 B.若,則C.若,且,則 D.若,且,則3.已知向量,滿足,,且與夾角為,則()A. B.C. D.4.下列函數(shù)為奇函數(shù)的是A. B.C. D.5.函數(shù)f(x)=logA.(-∞,1) B.(2,+∞)C.(-∞,32) D.(36.王安石在《游褒禪山記》中寫道“世之奇?zhèn)?、瑰怪,非常之觀,常在于險遠,而人之所罕至焉,故非有志者不能至也”,請問“有志”是到達“奇?zhèn)ァ⒐骞?,非常之觀”的A.充要條件 B.既不充分也不必要條件C.充分不必要條件 D.必要不充分條件7.某食品的保鮮時間(單位:小時)與儲存溫度(單位:)滿足函數(shù)關系(為自然對數(shù)的底數(shù),為常數(shù))若該食品在的保鮮時間是384小時,在的保鮮時間是24小時,則該食品在的保險時間是()小時A.6 B.12C.18 D.248.若向量滿足:則A.2 B.C.1 D.9.已知一個幾何體的三視圖如圖所示,其中俯視圖為半圓畫,則該幾何體的體積為()A B.C. D.10.若關于的函數(shù)的最大值為,最小值為,且,則實數(shù)的值為()A.2020 B.2019C.1009 D.1010二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù)其中且的圖象過定點,則的值為______12.____.13.若函數(shù)是定義在上的偶函數(shù),當時,.則當時,______,若,則實數(shù)的取值范圍是_______.14.已知,則____________.15.已知定義在上的函數(shù)滿足,且當時,.若對任意,恒成立,則實數(shù)的取值范圍是______16.已知冪函數(shù)的圖象過點(2,),則___________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.解下列關于的不等式;(1);(2).18.如圖,在平面直角坐標系中,為單位圓上一點,射線繞點按逆時針方向旋轉后交單位圓于點,點的橫坐標為(1)求的表達式,并求(2)若,求的值19.某同學作函數(shù)f(x)=Asin(x+)在一個周期內(nèi)的簡圖時,列表并填入了部分數(shù)據(jù),如下表:0-3(1)請將上表數(shù)據(jù)補充完整,并求出f(x)的解析式;(2)若f(x)在區(qū)間(m,0)內(nèi)是單調(diào)函數(shù),求實數(shù)m的最小值.20.已知二次函數(shù).(1)若在的最大值為5,求的值;(2)當時,若對任意實數(shù),總存在,使得.求的取值范圍.21.已知函數(shù),,.(1)若,求函數(shù)的解析式;(2)試判斷函數(shù)在區(qū)間上的單調(diào)性,并用函數(shù)單調(diào)性定義證明.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】由圖可知,,所以,所以,又當,即,所以,即,當時,,故選.考點:三角函數(shù)的圖象與性質(zhì).2、A【解析】根據(jù)不等式的性質(zhì)判斷【詳解】若,顯然有,所以,A正確;若,當時,,B錯;若,則,當時,,,C錯;若,且,也滿足已知,此時,D錯;故選:A3、D【解析】根據(jù)向量的運算性質(zhì)展開可得,再代入向量的數(shù)量積公式即可得解.【詳解】根據(jù)向量運算性質(zhì),,故選:D4、D【解析】函數(shù)是非奇非偶函數(shù);和是偶函數(shù);是奇函數(shù),故選D考點:函數(shù)的奇偶性5、A【解析】根據(jù)復合函數(shù)的單調(diào)性求解即可.【詳解】因為y=log13x為減函數(shù),且定義域為0,+∞.所以x故求y=x2-3x+2的單調(diào)遞減區(qū)間即可.又對稱軸為x=32,y=x2-3x+2在故選:A【點睛】本題主要考查了復合函數(shù)的單調(diào)區(qū)間,需要注意對數(shù)函數(shù)的定義域,屬于基礎題型.6、D【解析】根據(jù)題意“非有志者不能至也”可知到達“奇?zhèn)?、瑰怪,非常之觀”必是有志之士,故“有志”是到達“奇?zhèn)?、瑰怪,非常之觀”的必要條件,故選D.7、A【解析】先閱讀題意,再結合指數(shù)運算即可得解.【詳解】解:由題意有,,則,即,則,即該食品在的保險時間是6小時,故選A.【點睛】本題考查了指數(shù)冪的運算,重點考查了解決實際問題的能力,屬基礎題.8、B【解析】由題意易知:即,,即.故選B.考點:向量的數(shù)量積的應用.9、C【解析】由三視圖可知,該幾何體為半個圓柱,故體積為.10、D【解析】化簡函數(shù),構造函數(shù),再借助函數(shù)奇偶性,推理計算作答.【詳解】依題意,當時,,,則,當時,,,即函數(shù)定義域為R,,令,,顯然,即函數(shù)是R上的奇函數(shù),依題意,,,而,即,而,解得,所以實數(shù)的值為.故選:D二、填空題:本大題共6小題,每小題5分,共30分。11、1【解析】根據(jù)指數(shù)函數(shù)的圖象過定點,即可求出【詳解】函數(shù)其中且的圖象過定點,,,則,故答案為1【點睛】本題考查了指數(shù)函數(shù)圖象恒過定點的應用,屬于基礎題.12、.【解析】本題直接運算即可得到答案.【詳解】解:,故答案為:.【點睛】本題考查指數(shù)冪的運算、對數(shù)的運算,是基礎題.13、①.②.【解析】根據(jù)給定條件利用偶函數(shù)的定義即可求出時解析式;再借助函數(shù)在單調(diào)性即可求解作答.【詳解】因函數(shù)是定義在上的偶函數(shù),且當時,,則當時,,,所以當時,;依題意,在上單調(diào)遞增,則,解得,所以實數(shù)的取值范圍是.故答案為:;14、【解析】求得函數(shù)的最小正周期為,進而計算出的值(其中),再利用周期性求解即可.【詳解】函數(shù)的最小正周期為,當時,,,,,,,所以,,,因此,.故答案為:.15、【解析】根據(jù)題意求出函數(shù)和圖像,畫出圖像根據(jù)圖像解題即可.【詳解】因為滿足,即;又由,可得,因為當時,所以當時,,所以,即;所以當時,,所以,即;根據(jù)解析式畫出函數(shù)部分圖像如下所示;因為對任意,恒成立,根據(jù)圖像當時,函數(shù)與圖像交于點,即的橫坐標即為的最大值才能符合題意,所以,解得,所以實數(shù)的取值范圍是:.故答案為:.16、【解析】由冪函數(shù)所過的點求的解析式,進而求即可.【詳解】由題設,若,則,可得,∴,故.故答案為:三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據(jù)一元二次不等式的解法即可得出答案;(1)根據(jù)一元二次不等式的解法即可得出答案.【小問1詳解】解:不等式可化為,解得,所以不等式的解集為;【小問2詳解】解:不等式可化為,解得或,所以不等式的解集為.18、(1),(2)【解析】(1)由點的坐標可求得,再由三角函數(shù)的定義可求出,從而可求出的值,(2)由題意可得,則可求得,從而利用三角函數(shù)恒等變換公式可求得結果【小問1詳解】因為,所以,由三角函數(shù)定義,得所以【小問2詳解】因為,所以,因為,所以所以19、(1)表格見解析,(2)【解析】(1)由題意,根據(jù)五點法作圖,利用正弦函數(shù)的性質(zhì),補充表格,并求出函數(shù)的解析式(2)由題意利用正弦函數(shù)的單調(diào)性,求出實數(shù)的最小值【小問1詳解】解:作函數(shù),,的簡圖時,根據(jù)表格可得,,,結合五點法作圖,,,故函數(shù)的解析式為列表如下:00300【小問2詳解】解:因為,所以,若在區(qū)間內(nèi)是單調(diào)函數(shù),則,且,解得,故實數(shù)的最小值為20、(1)2;(2).【解析】(1)時,;當時,根據(jù)單調(diào)性可得答案;(2)依題意得,當、時,利用的單調(diào)性可得答案;當和時,結合圖象和單調(diào)性可得答案.【詳解】(1)當時,,因為,故,;當時,對稱軸,在上單調(diào)遞減,所以,不合題意,舍去,綜上可得:.(2)依題意得:,即,.①當時,對恒成立,所以,即;②當時,對恒成立,所以,即;③當時,對恒成立,所以,即;④當時,對恒成立,所以,即;綜上所述,的取值范圍為.【點睛】本題考查了二次函數(shù)恒成立的問題,所謂“動軸定區(qū)間法”,軸動區(qū)間定:比較對稱軸與區(qū)間端點的位置關系,根據(jù)函數(shù)的單調(diào)性數(shù)形結合判斷取得最值的點,需

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論