涼山市重點中學2025屆數(shù)學高一上期末達標檢測試題含解析_第1頁
涼山市重點中學2025屆數(shù)學高一上期末達標檢測試題含解析_第2頁
涼山市重點中學2025屆數(shù)學高一上期末達標檢測試題含解析_第3頁
涼山市重點中學2025屆數(shù)學高一上期末達標檢測試題含解析_第4頁
涼山市重點中學2025屆數(shù)學高一上期末達標檢測試題含解析_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

涼山市重點中學2025屆數(shù)學高一上期末達標檢測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知函數(shù),則()A.當且僅當時,有最小值為B.當且僅當時,有最小值為C.當且僅當時,有最大值為D.當且僅當時,有最大值為2.已知集合,下列結論成立是()A. B.C. D.3.若直線x+(1+m)y-2=0與直線mx+2y+4=0平行,則m的值是A.1 B.-2C.1或-2 D.4.下列說法正確的是A.棱柱被平面分成的兩部分可以都是棱柱 B.底面是矩形的平行六面體是長方體C.棱柱的底面一定是平行四邊形 D.棱錐的底面一定是三角形5.在邊長為3的菱形中,,,則=()A. B.-1C. D.6.已知偶函數(shù)f(x)在區(qū)間單調遞增,則滿足的x取值范圍是()A. B.C. D.7.若,則終邊在()A.第一、三象限 B.第一、二象限C.第二、四象限 D.第三、四象限8.若函數(shù)是函數(shù)(且)的反函數(shù),且,則()A. B.C. D.9.函數(shù)的單調遞增區(qū)間是()A. B.C. D.10.已知棱長為1的正方體的俯視圖是一個面積為1的正方形,則該正方體的正視圖的面積可能等于A. B.C. D.2二、填空題:本大題共6小題,每小題5分,共30分。11.命題的否定是__________12.已知樣本9,10,11,,的平均數(shù)是10,標準差是,則______,______.13.《九章算術》是中國古代的數(shù)學名著,其中《方田》一章涉及到了弧田面積的計算問題,如圖所示,弧田是由弧AB和弦AB所圍成的圖中陰影部分若弧田所在圓的半徑為1,圓心角為,則此弧田的面積為____________.14.已知,寫出一個滿足條件的的值:______15.已知函數(shù)則不等式的解集是_____________16.已知圓:,為圓上一點,、、,則的最大值為______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知為二次函數(shù),且(1)求的表達式;(2)設,其中,m為常數(shù)且,求函數(shù)的最值18.已知,且(1)求的值;(2)求的值19.已知函數(shù)是定義在上的奇函數(shù),且.(1)求函數(shù)解析式;(2)判斷函數(shù)在上的單調性,并用定義證明;(3)解關于的不等式:.20.我們知道,函數(shù)的圖象關于坐標原點成中心對稱圖形的充要條件是函數(shù)為奇函數(shù),有同學發(fā)現(xiàn)可以將其推廣為:函數(shù)的圖象關于點成中心對稱圖形的充要條件是函數(shù)為奇函數(shù).若函數(shù)的圖象關于點對稱,且當時,.(1)求的值;(2)設函數(shù).(i)證明函數(shù)的圖象關于點對稱;(ii)若對任意,總存在,使得成立,求的取值范圍.21.已知函數(shù),(其中)(1)求函數(shù)的值域;(2)如果函數(shù)在恰有10個零點,求最小正周期的取值范圍

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】由基本不等式可得答案.【詳解】因為,所以,當且僅當即時等號成立.故選:A.2、C【解析】利用集合的交、并、補運算進行判斷.【詳解】因為,所以,故A錯;,故B錯;,故D錯.故選:C3、A【解析】分類討論直線的斜率情況,然后根據(jù)兩直線平行的充要條件求解即可得到所求【詳解】①當時,兩直線分別為和,此時兩直線相交,不合題意②當時,兩直線的斜率都存在,由直線平行可得,解得綜上可得故選A【點睛】本題考查兩直線平行的等價條件,解題的關鍵是將問題轉化為對直線斜率存在性的討論.也可利用以下結論求解:若,則且或且4、A【解析】對于B.底面是矩形的平行六面體,它的側面不一定是矩形,故它也不一定是長方體,故B錯;對于C.棱柱的底面是平面多邊形,不一定是平行四邊形,故C錯;對于D.棱錐的底面是平面多邊形,不一定是三角形,故D錯;故選A考點:1.命題的真假;2.空間幾何體的特征5、C【解析】運用向量的減法運算,表示向量,再運用向量的數(shù)量積運算,可得選項.【詳解】.故選:C.【點睛】本題考查向量的加法、減法運算,向量的線性表示,向量的數(shù)量積運算,屬于基礎題.6、A【解析】由偶函數(shù)性質得函數(shù)在上的單調性,然后由單調性解不等式【詳解】因為偶函數(shù)在區(qū)間上單調遞增,所以在區(qū)間上單調遞減,故越靠近軸,函數(shù)值越小,因為,所以,解得:.故選:A7、A【解析】分和討論可得角的終邊所在的象限.【詳解】解:因為,所以當時,,其終邊在第三象限;當時,,其終邊在第一象限.綜上,的終邊在第一、三象限.故選:A.8、B【解析】由題意可得出,結合可得出的值,進而可求得函數(shù)的解析式.【詳解】由于函數(shù)是函數(shù)(且)的反函數(shù),則,則,解得,因此,.故選:B.9、B【解析】先求出函數(shù)的定義域,然后將復合函數(shù)分解為內、外函數(shù),分別討論內外函數(shù)的單調性,進而根據(jù)復合函數(shù)單調性“同增異減”的原則,得到函數(shù)y=log3(x2-2x)的單調遞增區(qū)間【詳解】函數(shù)y=log5(x2-2x)的定義域為(-∞,0)∪(2,+∞),令t=x2-2x,則y=log5t,∵y=log5t為增函數(shù),t=x2-2x在(-∞,0)上為減函數(shù),在(2,+∞)為增函數(shù),∴函數(shù)y=log5(x2-2x)的單調遞增區(qū)間為(2,+∞),故選B【點睛】本題考查的知識點是復合函數(shù)的單調性,二次函數(shù)的性質,對數(shù)函數(shù)的單調性,其中復合函數(shù)單調性“同增異減”是解答本題的關鍵10、C【解析】如果主視圖是從垂直于正方體的面看過去,則其面積為1;如果斜對著正方體的某表面看,其面積就變大,最大時,(是正對著正方體某豎著的棱看),面積為以上表面的對角線為長,以棱長為寬的長方形,其面積為,可得主視圖面積最小是1,最大是,故選C.點睛:思考三視圖還原空間幾何體首先應深刻理解三視圖之間的關系,遵循“長對正,高平齊,寬相等”的基本原則,其內涵為正視圖的高是幾何體的高,長是幾何體的長;俯視圖的長是幾何體的長,寬是幾何體的寬;側視圖的高是幾何體的高,寬是幾何體的寬.由三視圖畫出直觀圖的步驟和思考方法:1、首先看俯視圖,根據(jù)俯視圖畫出幾何體地面的直觀圖;2、觀察正視圖和側視圖找到幾何體前、后、左、右的高度;3、畫出整體,然后再根據(jù)三視圖進行調整.二、填空題:本大題共6小題,每小題5分,共30分。11、;【解析】根據(jù)存在量詞的命題的否定為全稱量詞命題即可得解;【詳解】解:因為命題“”為存在量詞命題,其否定為全稱量詞命題為故答案為:12、①.20②.96【解析】先由平均數(shù)的公式列出x+y=20,然后根據(jù)方差的公式列方程,求出x和y的值即可求出xy的值.【詳解】根據(jù)平均數(shù)及方差公式,可得:化簡得:,,或則,故答案為:20;96【點睛】本題主要考查了平均數(shù)和方等概念,以及解方程組,屬于容易題.13、【解析】根據(jù)題意所求面積,再根據(jù)扇形和三角形面積公式,進行求解即可.【詳解】易知為等腰三角形,腰長為,底角為,,所以,弧田的面積即圖中陰影部分面積,根據(jù)扇形面積及三角形面積可得:所以.故答案為:.14、(答案不唯一)【解析】利用,可得,,計算即可得出結果.【詳解】因為,所以,則,或,故答案為:(答案不唯一)15、【解析】分和0的大小關系分別代入對應的解析式即可求解結論.【詳解】∵函數(shù),∴當,即時,,故;當,即時,,故;∴不等式的解集是:.故答案為:.16、53【解析】設,則,從而求出,再根據(jù)的取值范圍,求出式子的最大值.【詳解】設,因為為圓上一點,則,且,則(當且僅當時取得最大值),故答案為:53.【點睛】本題屬于圓與距離的應用問題,主要考查代數(shù)式的最值求法.解決此類問題一是要將題設條件轉化為相應代數(shù)式;二是要確定代數(shù)式中變量的取值范圍.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2);【解析】(1)利用待定系數(shù)法可求的表達式;(2)利用換元法結合二次函數(shù)的單調性可求函數(shù)的最值【小問1詳解】設,因為,所以整理的,故有,即,所以.【小問2詳解】,設,故又,∵,所以,在為增函數(shù),∴即時,;即時,18、(1);(2)【解析】(1)將條件化為,然后,可得答案;(2)由第一問可得,然后,解出即可.【詳解】(1)因為,且,所以故又因為,所以,即,所以所以(2)由(1)知,又因為,所以.因為,,所以,即,解得或因為,所以,所以19、(1);(2)函數(shù)在上是增函數(shù),證明見解析;(3).【解析】(1)根據(jù)奇函數(shù)的定義可求得的值,再結合已知條件可求得實數(shù)的值,由此可得出函數(shù)的解析式;(2)判斷出函數(shù)在上是增函數(shù),任取、且,作差,因式分解后判斷的符號,即可證得結論成立;(3)由得,根據(jù)函數(shù)的單調性與定義域可得出關于實數(shù)的不等式組,由此可解得實數(shù)的取值范圍.【小問1詳解】解:因為函數(shù)是定義在上的奇函數(shù),則,即,可得,則,所以,,則,因此,.【小問2詳解】證明:函數(shù)在上是增函數(shù),證明如下:任取、且,則,因為,則,,故,即.因此,函數(shù)在上是增函數(shù).【小問3詳解】解:因為函數(shù)是上的奇函數(shù)且為增函數(shù),由得,由已知可得,解得.因此,不等式的解集為.20、(1);(2)(i)證明見解析;(ii).【解析】(1)根據(jù)題意∵為奇函數(shù),∴,令x=1即可求出;(2)(i)驗證為奇函數(shù)即可;(ii))求出在區(qū)間上的值域為A,記在區(qū)間上的值域為,則.由此問題轉化為討論f(x)的值域B,分,,三種情況討論即可.【小問1詳解】∵為奇函數(shù),∴,得,則令,得.【小問2詳解】(i),∵為奇函數(shù),∴為奇函數(shù),∴函數(shù)的圖象關于點對稱.(ii)在區(qū)間上單調遞增,∴在區(qū)間上的值域為,記在區(qū)間上的值域為,由對,總,使得成立知,①當時,上單調遞增,由對稱性知,在上單調遞增,∴在上單調遞增,只需即可,得,∴滿足題意;②當時,在上單調遞減,在上單調遞增,由對稱性知,在上單調遞增,在上單調遞減,∴在上單調遞減,在上單調遞增,在上單調遞減,∴或,當時,,,∴滿足題意;③當時,在上單調遞減,由對稱性知,在上單調遞減

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論