版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆貴州省高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)的導(dǎo)函數(shù)的圖象如圖所示,則下列說法正確的是()A.函數(shù)在上單調(diào)遞增B.函數(shù)的遞減區(qū)間為C.函數(shù)在處取得極大值D.函數(shù)在處取得極小值2.用反證法證明命題“a,b∈N,如果ab可以被5整除,那么a,b至少有1個能被5整除.”假設(shè)內(nèi)容是()A.a,b都能被5整除 B.a,b都不能被5整除C.a不能被5整除 D.a,b有1個不能被5整除3.南宋數(shù)學(xué)家楊輝在《詳解九章算法》中討論過高階等差數(shù)列與一般等差數(shù)列不同,前后兩項之差并不相等,而是逐項差數(shù)之差或者高次差相等.例如“百層球堆垛”:第一層有1個球,第二層有3個球,第三層有6個球,第四層有10個球,第五層有15個球,…,各層球數(shù)之差:,,,,…即2,3,4,5,…是等差數(shù)列.現(xiàn)有一個高階等差數(shù)列,其前6項分別為1,3,6,12,23,41,則該數(shù)列的第8項為()A.51 B.68C.106 D.1574.若,則()A. B.C. D.5.已知△的頂點B,C在橢圓上,頂點A是橢圓的一個焦點,且橢圓的另一個焦點在BC邊上,則△的周長是()A. B.C.8 D.166.已知橢圓的左右焦點分別為,,過C上的P作y軸的垂線,垂足為Q,若四邊形是菱形,則C的離心率為()A. B.C. D.7.用這3個數(shù)組成沒有重復(fù)數(shù)字的三位數(shù),則事件“這個三位數(shù)是偶數(shù)”與事件“這個三位數(shù)大于342”()A.是互斥但不對立事件 B.不是互斥事件C.是對立事件 D.是不可能事件8.某學(xué)校隨機抽取了部分學(xué)生,對他們每周使用手機的時間進行統(tǒng)計,得到如下的頻率分布直方圖.則下列說法:①;②若抽取100人,則平均用時13.75小時;③若從每周使用時間在,,三組內(nèi)的學(xué)生中用分層抽樣的方法選取8人進行訪談,則應(yīng)從使用時間在內(nèi)的學(xué)生中選取的人數(shù)為3.其中正確的序號是()A.①② B.①③C.②③ D.①②③9.我們知道,償還銀行貸款時,“等額本金還款法”是一種很常見的還款方式,其本質(zhì)是將本金平均分配到每一期進行償還,每一期的還款金額由兩部分組成,一部分為每期本金,即貸款本金除以還款期數(shù),另一部分是利息,即貸款本金與已還本金總額的差乘以利率.自主創(chuàng)業(yè)的大學(xué)生張華向銀行貸款的本金為48萬元,張華跟銀行約定,按照等額本金還款法,每個月還一次款,20年還清,貸款月利率為,設(shè)張華第個月的還款金額為元,則()A.2192 B.C. D.10.拋物線上有兩個點,焦點,已知,則線段的中點到軸的距離是()A.1 B.C.2 D.11.已知雙曲線的右焦點為,以為圓心,以為半徑的圓與雙曲線的一條漸近線交于,兩點,若(為坐標(biāo)原點),則雙曲線的離心率為().A. B.C. D.12.直線的一個方向向量為,則它的斜率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知A,B為x,y正半軸上的動點,且,O為坐標(biāo)原點,現(xiàn)以為邊長在第一象限做正方形,則的最大值為___________.14.若函數(shù)在區(qū)間上的最大值是,則__________15.已知雙曲線M的中心在原點,以坐標(biāo)軸為對稱軸.從以下三個條件中任選兩個條件,并根據(jù)所選條件求雙曲線M的標(biāo)準(zhǔn)方程.①一個焦點坐標(biāo)為;②經(jīng)過點;③離心率為.你選擇的兩個條件是___________,得到的雙曲線M的標(biāo)準(zhǔn)方程是___________.16.已知雙曲線的左,右焦點分別為,,右焦點到一條漸近線的距離是,則其離心率的值是______;若點P是雙曲線C上一點,滿足,,則雙曲線C的方程為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓C的中心在原點,焦點在x軸上,長軸長為4,且點在橢圓上(1)經(jīng)過點M(1,)作一直線交橢圓于AB兩點,若點M為線段AB的中點,求直線的斜率;(2)設(shè)橢圓C的上頂點為P,設(shè)不經(jīng)過點P的直線與橢圓C交于C,D兩點,且,求證:直線過定點18.(12分)已知為各項均為正數(shù)的等比數(shù)列,且,(1)求數(shù)列的通項公式;(2)令,求數(shù)列前n項和19.(12分)已知函數(shù).(Ⅰ)求的單調(diào)遞減區(qū)間;(Ⅱ)若當(dāng)時,恒成立,求實數(shù)a的取值范圍.20.(12分)總書記指出:“我們既要綠水青山,也要金山銀山.”新能源汽車環(huán)保、節(jié)能,以電代油,減少排放,既符合我國的國情,也代表了世界汽車產(chǎn)業(yè)發(fā)展的方向.工業(yè)部表示,到2025年中國的汽車總銷量將達到3500萬輛,并希望新能源汽車至少占總銷量的五分之一.江蘇某新能源公司年初購入一批新能源汽車充電樁,每臺16200元,第一年每臺設(shè)備的維修保養(yǎng)費用為1100元,以后每年增加400元,每臺充電樁每年可給公司收益8100元(1)每臺充電樁第幾年開始獲利?(2)每臺充電樁在第幾年時,年平均利潤最大21.(12分)點與定點的距離和它到直線:的距離的比是常數(shù).(1)求動點的軌跡的方程;(2)點在(1)中軌跡上運動軸,為垂足,點滿足,求點軌跡方程.22.(10分)設(shè)命題p:實數(shù)x滿足,其中;命題q:若,且為真,求實數(shù)x的取值范圍;若是的充分不必要條件,求實數(shù)m的取值范圍
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù)函數(shù)單調(diào)性與導(dǎo)數(shù)之間的關(guān)系及極值的定義結(jié)合圖像即可得出答案.【詳解】解:根據(jù)函數(shù)的導(dǎo)函數(shù)的圖象可得,當(dāng)時,,故函數(shù)在和上遞減,當(dāng)時,,故函數(shù)在和上遞增,所以函數(shù)在和處取得極小值,在處取得極大值,故ABD錯誤,C正確.故選:C.2、B【解析】由于反證法是命題的否定的一個運用,故用反證法證明命題時,可以設(shè)其否定成立進行推證.命題“a,b∈N,如果ab可被5整除,那么a,b至少有1個能被5整除.”的否定是“a,b都不能被5整除”考點:反證法3、C【解析】對高階等差數(shù)列按其定義逐一進行構(gòu)造數(shù)列,直到出現(xiàn)一般等差數(shù)列為止,再根據(jù)其遞推關(guān)系進行求解.【詳解】現(xiàn)有一個高階等差數(shù)列,其前6項分別為1,3,6,12,23,41,各項與前一項之差:,,,,,…即2,3,6,11,18,…,,,,,…即1,3,5,7,…是等差數(shù)列,所以,故選:C4、D【解析】設(shè),計算出、的值,利用平方差公式可求得結(jié)果.【詳解】設(shè)由已知可得,,因此,.故選:D.5、D【解析】根據(jù)橢圓定義求解【詳解】由橢圓定義得△的周長是,故選:D.6、C【解析】根據(jù)題意求出P點坐標(biāo),代入橢圓方程中,可整理得到關(guān)于a,c的等式,進一步整理為關(guān)于e的方程,解得答案.【詳解】如圖示:由題意可知,因為四邊形是菱形,所以,則,所以P點坐標(biāo)為,將P點坐標(biāo)為代入得:,整理得,故,由于,解得,所以,故選:C.7、B【解析】根據(jù)題意列舉出所有可能性,進而根據(jù)各類事件的定義求得答案.【詳解】由題意,將2,3,4組成一個沒有重復(fù)數(shù)字的三位數(shù)的情況有:{234,243,324,342,423,432},其中偶數(shù)有{234,324,342,432},大于342的有{423,432}.所以兩個事件不是互斥事件,也不是對立事件.故選:B.8、B【解析】根據(jù)頻率分布直方圖中小矩形的面積和為1可求出,再求出頻率分布直方圖的平均值,即為抽取100人的平均值的估計值,再利用分層抽樣可確定出使用時間在內(nèi)的學(xué)生中選取的人數(shù)為3.【詳解】,故①正確;根據(jù)頻率分布直方圖可估計出平均值為,所以估計抽取100人的平均用時13.75小時,②的說法太絕對,故②錯誤;每周使用時間在,,三組內(nèi)的學(xué)生的比例為,用分層抽樣的方法選取8人進行訪談,則應(yīng)從使用時間在內(nèi)的學(xué)生中選取的人數(shù)為,故③正確.故選:B.9、D【解析】計算出每月應(yīng)還的本金數(shù),再計算第n個月已還多少本金,由此可計算出個月的還款金額.【詳解】由題意可知:每月還本金為2000元,設(shè)張華第個月的還款金額為元,則,故選:D10、B【解析】利用拋物線的定義,將拋物線上的點到焦點的距離轉(zhuǎn)化為點到準(zhǔn)線的距離,即可求出線段中點的橫坐標(biāo),即得到答案.【詳解】由已知可得拋物線的準(zhǔn)線方程為,設(shè)點的坐標(biāo)分別為和,由拋物線的定義得,即,線段中點的橫坐標(biāo)為,故線段的中點到軸的距離是.故選:.11、A【解析】設(shè)雙曲線的一條漸近線方程為,為的中點,可得,由,可知為的三等分點,用兩種方式表示,可得關(guān)于的方程組,結(jié)合即可得到雙曲線的離心率.【詳解】設(shè)雙曲線的一條漸近線方程為,為的中點,可得,由到漸近線的距離為,所以,又,所以,因為,所以,整理可得:,即,所以,可得,所以,所以雙曲線的離心率為,故選:A.12、A【解析】根據(jù)的方向向量求得斜率.【詳解】且是直線的方向向量,.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、32【解析】建立平面直角坐標(biāo)系,設(shè)出角度和邊長,表達出點坐標(biāo),進而表達出,利用三角函數(shù)換元,求出最大值.【詳解】如圖,過點D作DE⊥x軸于點E,過點C作CF⊥y軸于點F,設(shè),(),則由三角形全等可知,設(shè),,則,則,,則,令,,則,當(dāng)時,取得最大值,最大值為32故答案為:3214、0【解析】由函數(shù),又由,則,根據(jù)二次函數(shù)的性質(zhì),即可求解函數(shù)的最大值,得到答案.【詳解】由函數(shù),因為,所以,當(dāng)時,則,所以.【點睛】本題主要考查了余弦函數(shù)的性質(zhì),以及二次函數(shù)的圖象與性質(zhì),其中解答中根據(jù)余弦函數(shù),轉(zhuǎn)化為關(guān)于的二次函數(shù),利用二次函數(shù)的圖象與性質(zhì)是解答的關(guān)鍵,著重考查了轉(zhuǎn)化思想,以及推理與計算能力,屬于基礎(chǔ)題.15、①.①②或①③或②③②.或或【解析】選①②,根據(jù)焦點坐標(biāo)及頂點坐標(biāo)直接求解,選①③,根據(jù)焦點坐標(biāo)及離心率求出即可得解,選②③,可由頂點坐標(biāo)及離心率得出,即可求解.【詳解】選①②,由題意則,,,雙曲線的標(biāo)準(zhǔn)方程為,故答案為:①②;,選①③,由題意,,,,雙曲線的標(biāo)準(zhǔn)方程為,選②③,由題意知,,,雙曲線的標(biāo)準(zhǔn)方程為.故答案為:①②;或①③;或②③;.16、①.##1.5②.【解析】求得焦點到漸近線的距離可得,計算即可求得離心率,由雙曲線的定義可求得,計算即可得出結(jié)果.【詳解】雙曲線的漸近線方程為,即,焦點到漸近線的距離為,又,,,,.雙曲線上任意一點到兩焦點距離之差的絕對值為,即,,即,解得:,由,解得:,.雙曲線C的方程為.故答案為:;.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析.【解析】(1)設(shè)橢圓的方程為代入點的坐標(biāo)求出橢圓的方程,再利用點差法求解;(2)由題得直線的斜率存在,設(shè)直線的方程為,聯(lián)立直線和橢圓的方程得韋達定理,根據(jù)和韋達定理得到,即得證.【小問1詳解】解:由題設(shè)橢圓的方程為因為橢圓經(jīng)過點,所以所以橢圓的方程為.設(shè),所以,所以,由題得,所以,所以,所以,所以直線的斜率為.【小問2詳解】解:由題得當(dāng)直線的斜率不存在時,不符合題意;當(dāng)直線的斜率存在時,設(shè)直線的方程為,聯(lián)立方程組y=kx+nx24所以,解得①,設(shè),,,,則②,因為,則,,,又,,所以③,由②③可得(舍或滿足條件①,此時直線的方程為,故直線過定點18、(1)(2)【解析】(1)利用基本量法,求出首項和公比,即可求解.(2)利用錯位相減法,即可求解.【小問1詳解】設(shè)等比數(shù)列公比為【小問2詳解】19、(Ⅰ)單調(diào)遞減區(qū)間為;(Ⅱ).【解析】(Ⅰ)求函數(shù)的導(dǎo)函數(shù),求的區(qū)間即為所求減區(qū)間;(Ⅱ)化簡不等式,變形為,即求,令,求的導(dǎo)函數(shù)判斷的單調(diào)性求出最小值,可求出的范圍.【詳解】(Ⅰ)由題可知.令,得,從而,∴的單調(diào)遞減區(qū)間為.(Ⅱ)由可得,即當(dāng)時,恒成立.設(shè),則.令,則當(dāng)時,.∴當(dāng)時,單調(diào)遞增,,則當(dāng)時,,單調(diào)遞減;當(dāng)時,,單調(diào)遞增.∴,∴.【點睛】思路點睛:在函數(shù)中,恒成立問題,可選擇參變分離的方法,分離出參數(shù)轉(zhuǎn)化為或,轉(zhuǎn)化為求函數(shù)的最值求出的范圍.20、(1)公司從第3年開始獲利;(2)第9年時每臺充電樁年平均利潤最大3600元【解析】(1)判斷已知條件是等差數(shù)列,然后求解利潤的表達式,推出表達式求解n即可(2)利用基本不等式求解最大值即可【詳解】(1)每年的維修保養(yǎng)費用是以1100為首項,400為公差的等差數(shù)列,設(shè)第n年時累計利潤為f(n),f(n)=8100n-[1100+1500+…+(400n+700)]-16200=8100n-n(200n+900)-16200=-200n2+7200n-16200=-200(n2-36n+81),開始獲利即f(n)>0,∴-200(n2-36n+81)>0,即n2-36n+81<0,解得,所以公司從第3年開始獲利;(2)每臺充電樁年平均利潤為當(dāng)且僅當(dāng),即n=9時,等號成立即在第9年時每臺充電樁年平均利潤最大3600元【點睛】本題考查數(shù)列與函數(shù)的實際應(yīng)用,基本不等式的應(yīng)用,考查轉(zhuǎn)化思想以及計算能力,是中檔題21、(1);(2)【解析】(1)根據(jù)題意用表示出與,再代入,再化簡即可得出答案。(2)設(shè),利用表示出點,再將點代入橢圓,化簡即可得出答案。【詳解】(1)由題意知,所以化簡得:(2)設(shè),因為,則將代入橢圓得化簡得【點睛】本題
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- QC/T 674-2024汽車用壓縮天然氣電磁閥
- GB/T 18281.3-2024醫(yī)療保健產(chǎn)品滅菌生物指示物第3部分:濕熱滅菌用生物指示物
- 工作總結(jié)之餐飲實習(xí)總結(jié)報告
- 銀行合規(guī)管理制度創(chuàng)新
- 采購團隊培訓(xùn)與發(fā)展制度
- 《使用繪圖工具》課件
- 老同學(xué)聚會感言匯編(35篇)
- SZSD07 0002-2024數(shù)據(jù)要素技術(shù)與管理規(guī)范
- 案例三 夢得利服裝
- 《高分子材料的聚合》課件
- 國家開放大學(xué)電大建筑制圖基礎(chǔ)機考網(wǎng)考題庫及答案C完整版
- 金銀花生產(chǎn)技術(shù)規(guī)程DB41-T 2187-2021
- 湘教版八年級美術(shù)期末試卷
- 2024-2030年中國預(yù)裝式變電站行業(yè)現(xiàn)狀規(guī)模與前景趨勢預(yù)測研究報告
- 福建省廈門市湖里區(qū)2023-2024學(xué)年一年級上學(xué)期期末數(shù)學(xué)試卷
- 工程項目調(diào)研報告(共7篇)
- 9 《集合》 (教學(xué)設(shè)計)-2024-2025學(xué)年三年級上冊數(shù)學(xué)人教版
- 浙江省杭州市養(yǎng)正中學(xué)2024-2025學(xué)年九年級上學(xué)期培優(yōu)(月考)科學(xué)試卷(無答案)
- 主播競業(yè)限制協(xié)議
- 四川省瀘州市高2023級高一學(xué)年末統(tǒng)一考試+語文
- GB/T 44432-2024快件報關(guān)信息交換規(guī)范
評論
0/150
提交評論