版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
福建省福州市師大附中2025屆高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考模擬試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知點(diǎn)A、是拋物線:上的兩點(diǎn),且線段過(guò)拋物線的焦點(diǎn),若的中點(diǎn)到軸的距離為3,則()A.3 B.4C.6 D.82.已知點(diǎn),,,動(dòng)點(diǎn)P滿足,則的取值范圍為()A. B.C. D.3.九連環(huán)是我國(guó)從古至今廣為流傳的一種益智游戲,它由九個(gè)鐵絲圓環(huán)相連成串,按一定規(guī)則移動(dòng)圓環(huán)的次數(shù)決定解開(kāi)圓環(huán)的個(gè)數(shù).在某種玩法中,用表示解開(kāi)n(,)個(gè)圓環(huán)所需的最少移動(dòng)次數(shù),若數(shù)列滿足,且當(dāng)時(shí),則解開(kāi)5個(gè)圓環(huán)所需的最少移動(dòng)次數(shù)為()A.10 B.16C.21 D.224.設(shè)是橢圓的上頂點(diǎn),若上的任意一點(diǎn)都滿足,則的離心率的取值范圍是()A. B.C. D.5.已知等比數(shù)列中,,,則該數(shù)列的公比為()A. B.C. D.6.《米老鼠和唐老鴨》這部動(dòng)畫(huà)給我們的童年帶來(lái)了許多美好的回憶,令我們印象深刻.如圖所示,有人用3個(gè)圓構(gòu)成米奇的簡(jiǎn)筆畫(huà)形象.已知3個(gè)圓方程分別為:圓圓,圓若過(guò)原點(diǎn)的直線與圓、均相切,則截圓所得的弦長(zhǎng)為()A B.C. D.7.已知某地區(qū)7%的男性和0.49%的女性患色盲.假如男性、女性各占一半,從中隨機(jī)選一人,則此人恰是色盲的概率是()A.0.01245 B.0.05786C.0.02865 D.0.037458.定義運(yùn)算:.已知,都是銳角,且,,則()A. B.C. D.9.拋物線的焦點(diǎn)坐標(biāo)A. B.C. D.10.已知A,B,C,D是同一球面上的四個(gè)點(diǎn),其中是正三角形,平面,,則該球的表面積為()A. B.C. D.11.如圖,若斜邊長(zhǎng)為的等腰直角(與重合)是水平放置的的直觀圖,則的面積為()A.2 B.C. D.812.若數(shù)列滿足,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知點(diǎn)P是拋物線y2=2x上的動(dòng)點(diǎn),點(diǎn)P在y軸上的射影是M,點(diǎn),則|的最小值是_________14.已知數(shù)列滿足,定義使()為整數(shù)的k叫做“幸福數(shù)”,則區(qū)間內(nèi)所有“幸福數(shù)”的和為_(kāi)____15.將一枚質(zhì)地均勻的骰子,先后拋擲次,則出現(xiàn)向上的點(diǎn)數(shù)之和為的概率是________.16.在等差數(shù)列中,前n項(xiàng)和記作,若,則______三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知點(diǎn)及圓,點(diǎn)P是圓B上任意一點(diǎn),線段的垂直平分線l交半徑于點(diǎn)T,當(dāng)點(diǎn)P在圓上運(yùn)動(dòng)時(shí),記點(diǎn)T的軌跡為曲線E(1)求曲線E的方程;(2)設(shè)存在斜率不為零且平行的兩條直線,,它們與曲線E分別交于點(diǎn)C、D、M、N,且四邊形是菱形,求該菱形周長(zhǎng)的最大值18.(12分)已知橢圓的一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)重合,橢圓上的動(dòng)點(diǎn)到焦點(diǎn)的最大距離為.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)過(guò)作一條不與坐標(biāo)軸垂直的直線交橢圓于兩點(diǎn),弦的中垂線交軸于,當(dāng)變化時(shí),是否為定值?若是,定值為多少?19.(12分)已知橢圓的左、右焦點(diǎn)分別為,且,直線過(guò)與交于兩點(diǎn),的周長(zhǎng)為8(1)求的方程;(2)過(guò)作直線交于兩點(diǎn),且向量與方向相同,求四邊形面積的取值范圍20.(12分)已知等差數(shù)列的前項(xiàng)和為,,.(1)求的通項(xiàng)公式;(2)設(shè)數(shù)列的前項(xiàng)和為,用符號(hào)表示不超過(guò)x的最大數(shù),當(dāng)時(shí),求的值.21.(12分)已知等差數(shù)列滿足:,.(1)求數(shù)列的通項(xiàng)公式;(2)若數(shù)列滿足:,,求數(shù)列的通項(xiàng)公式.22.(10分)已知橢圓的焦距為,離心率為(1)求橢圓方程;(2)設(shè)過(guò)橢圓頂點(diǎn),斜率為的直線交橢圓于另一點(diǎn),交軸于點(diǎn),且,,成等比數(shù)列,求的值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】直接根據(jù)拋物線焦點(diǎn)弦長(zhǎng)公式以及中點(diǎn)坐標(biāo)公式求結(jié)果【詳解】設(shè),,則的中點(diǎn)到軸的距離為,則故選:D2、C【解析】由題設(shè)分析知的軌跡為(不與重合),要求的取值范圍,只需求出到圓上點(diǎn)的距離范圍即可.【詳解】由題設(shè),在以為直徑的圓上,令,則(不與重合),所以的取值范圍,即為到圓上點(diǎn)的距離范圍,又圓心到的距離,圓的半徑為2,所以的取值范圍為,即.故選:C3、D【解析】根據(jù)題意,結(jié)合數(shù)列遞推公式,代入計(jì)算即可.【詳解】根據(jù)題意,由,得.故選:D.4、C【解析】設(shè),由,根據(jù)兩點(diǎn)間的距離公式表示出,分類討論求出的最大值,再構(gòu)建齊次不等式,解出即可【詳解】設(shè),由,因?yàn)?,,所以,因?yàn)?,?dāng),即時(shí),,即,符合題意,由可得,即;當(dāng),即時(shí),,即,化簡(jiǎn)得,,顯然該不等式不成立故選:C【點(diǎn)睛】本題解題關(guān)鍵是如何求出的最大值,利用二次函數(shù)求指定區(qū)間上的最值,要根據(jù)定義域討論函數(shù)的單調(diào)性從而確定最值5、C【解析】設(shè)等比數(shù)列的公比為,可得出,即可得解.【詳解】設(shè)等比數(shù)列的公比為,可得出.故選:C.6、A【解析】設(shè)直線,利用直線與圓相切,求得斜率,再利用弦長(zhǎng)公式求弦長(zhǎng)【詳解】設(shè)過(guò)點(diǎn)的直線.由直線與圓、圓均相切,得解得(1).設(shè)點(diǎn)到直線的距離為則(2).又圓的半徑直線截圓所得弦長(zhǎng)結(jié)合(1)(2)兩式,解得7、D【解析】設(shè)出事件,利用全概率公式進(jìn)行求解.【詳解】用事件A,B分別表示隨機(jī)選1人為男性或女性,用事件C表示此人恰是色盲,則,且A,B互斥,故故選:D8、B【解析】,只需求出與的正、余弦值即可,用平方關(guān)系時(shí)注意角的范圍.【詳解】解:因?yàn)?,都是銳角,所以,,因?yàn)椋?,即,,所以,,因?yàn)?,所有,故選:B.【點(diǎn)睛】信息給予題,已知三角函數(shù)值求三角函數(shù)值,考查根據(jù)三角函數(shù)的恒等變換求值,基礎(chǔ)題.9、B【解析】由拋物線方程知焦點(diǎn)在x軸正半軸,且p=4,所以焦點(diǎn)坐標(biāo)為,所以選B10、C【解析】由題意畫(huà)出幾何體的圖形,把、、、擴(kuò)展為三棱柱,上下底面中心連線的中點(diǎn)與的距離為球的半徑,由此能求出球的表面積【詳解】把、、、擴(kuò)展為三棱柱,上下底面中心連線的中點(diǎn)與的距離為球的半徑,,,是正三角形,,,球的表面積為故選:C11、C【解析】由斜二測(cè)還原圖形計(jì)算即可求得結(jié)果.【詳解】在斜二測(cè)直觀圖中,由為等腰直角三角形,,可得,.還原原圖形如圖:則,則.故選:C12、C【解析】利用前項(xiàng)積與通項(xiàng)的關(guān)系可求得結(jié)果.【詳解】由已知可得.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】由拋物線的定義可得,所以的最小值轉(zhuǎn)化為求的最小值,由圖可知的最小值為,從而可求得答案【詳解】拋物線y2=2x焦點(diǎn),準(zhǔn)線為,由拋物線的定義可得,所以,因?yàn)?,,所以,所以,?dāng)且僅當(dāng)三點(diǎn)共線且在線段上時(shí),取得最小值,所以的最小值為,故答案為:14、2036【解析】先用換底公式化簡(jiǎn)之后,將表示出來(lái),找出滿足條件的“幸福數(shù)”,然后求和即可.【詳解】當(dāng)時(shí),,所以,若滿足正整數(shù),則,即,所以在內(nèi)的所有“幸福數(shù)”的和為:,故答案為:2036.15、【解析】將向上的點(diǎn)數(shù)記作,先計(jì)算出所有的基本事件數(shù),并列舉出事件“出現(xiàn)向上的點(diǎn)數(shù)之和為”所包含的基本事件,然后利用古典概型的概率公式可計(jì)算出所求事件的概率.【詳解】將骰子先后拋擲次,出現(xiàn)向上的點(diǎn)數(shù)記作,則基本事件數(shù)為,向上的點(diǎn)數(shù)之和為這一事件記為,則事件所包含的基本事件有:、、,共個(gè)基本事件,因此,.故答案為:.【點(diǎn)睛】本題考查利用古典概型的概率公式計(jì)算概率,解題時(shí)一般要列舉出相應(yīng)的基本事件,遵循不重不漏的基本原則,考查計(jì)算能力,屬于基礎(chǔ)題.16、16【解析】根據(jù)等差數(shù)列前項(xiàng)和公式及下標(biāo)和性質(zhì)以及通項(xiàng)公式計(jì)算可得;【詳解】解:因?yàn)?,所以,即,所以,所以,所以;故答案為:三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)【解析】(1)根據(jù)橢圓的定義和性質(zhì),建立方程求出,即可(2)設(shè)的方程為,,,,,設(shè)的方程為,,,,,分別聯(lián)立直線方程和橢圓方程,運(yùn)用韋達(dá)定理和判別式大于0,以及弦長(zhǎng)公式,求得,,運(yùn)用菱形和橢圓的對(duì)稱性可得,關(guān)于原點(diǎn)對(duì)稱,結(jié)合菱形的對(duì)角線垂直和向量數(shù)量積為0,可得,設(shè)菱形的周長(zhǎng)為,運(yùn)用基本不等式,計(jì)算可得所求最大值【小問(wèn)1詳解】點(diǎn)在線段的垂直平分線上,,又,曲線是以坐標(biāo)原點(diǎn)為中心,和為焦點(diǎn),長(zhǎng)軸長(zhǎng)為的橢圓設(shè)曲線的方程為,,,曲線的方程為【小問(wèn)2詳解】設(shè)的方程為,,,,,設(shè)的方程為,,,,,聯(lián)立可得,由可得,化簡(jiǎn)可得,①,,,同理可得,因?yàn)樗倪呅螢榱庑?,所以,所以,又因?yàn)?,所以,所以,關(guān)于原點(diǎn)對(duì)稱,又橢圓關(guān)于原點(diǎn)對(duì)稱,所以,關(guān)于原點(diǎn)對(duì)稱,,也關(guān)于原點(diǎn)對(duì)稱,所以且,所以,,,,因?yàn)樗倪呅螢榱庑?,可得,即,即,即,可得,化?jiǎn)可得,設(shè)菱形的周長(zhǎng)為,則,當(dāng)且僅當(dāng),即時(shí)等號(hào)成立,此時(shí),滿足①,所以菱形的周長(zhǎng)的最大值為【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:在處理此類直線與橢圓相交問(wèn)題中,一般先設(shè)出直線方程,聯(lián)立方程,利用韋達(dá)定理得出,,再具體問(wèn)題具體分析,一般涉及弦長(zhǎng)計(jì)算問(wèn)題,運(yùn)算比較繁瑣,需要較強(qiáng)的運(yùn)算能力,屬于難題。18、(1)(2)是,【解析】(1)由拋物線方程求出其焦點(diǎn)坐標(biāo),結(jié)合橢圓的幾何性質(zhì)列出,的方程,解方程求,由此可得橢圓方程,(2)聯(lián)立直線橢圓橢圓方程,求出弦的長(zhǎng)和其中垂線方程,再計(jì)算,由此完成證明.【小問(wèn)1詳解】拋物線的交點(diǎn)坐標(biāo)為(1,0),,又,又,∴,橢圓的標(biāo)準(zhǔn)方程為.【小問(wèn)2詳解】設(shè)直線的斜率為,則直線的方程為,聯(lián)立消元得到,顯然,,∴,又的中點(diǎn)坐標(biāo)為,直線的中垂線的斜率為∴直線的中垂線方程為,令,,(常數(shù)).【點(diǎn)睛】求定值問(wèn)題常見(jiàn)的方法有兩種:(1)從特殊入手,求出定值,再證明這個(gè)值與變量無(wú)關(guān)(2)直接推理、計(jì)算,并在計(jì)算推理的過(guò)程中消去變量,從而得到定值19、(1);(2).【解析】(1)根據(jù)給定條件直接求出半焦距,及長(zhǎng)半軸長(zhǎng)即可作答.(2)根據(jù)給定條件結(jié)合橢圓的對(duì)稱性可得四邊形為平行四邊形,設(shè)出直線l的方程,與橢圓C的方程聯(lián)立,借助韋達(dá)定理、對(duì)勾函數(shù)性質(zhì)計(jì)算作答.【小問(wèn)1詳解】依題意,橢圓半焦距,由橢圓定義知,的周長(zhǎng),解得,,因此橢圓的方程為.【小問(wèn)2詳解】依題意,直線的斜率不為0,設(shè)直線的方程為,,由消去并整理得:,則,,因與方向相同,即,又橢圓是以原點(diǎn)O為對(duì)稱中心的中心對(duì)稱圖形,于是得,即四邊形為平行四邊形,其面積,則,令,則,則,顯然在上單調(diào)遞增,則當(dāng)時(shí),,即,從而可得,所以四邊形面積的取值范圍為.【點(diǎn)睛】結(jié)論點(diǎn)睛:過(guò)定點(diǎn)的直線l:y=kx+b交圓錐曲線于點(diǎn),,則面積;過(guò)定點(diǎn)直線l:x=ty+a交圓錐曲線于點(diǎn),,則面積20、(1)(2)9【解析】(1)首先根據(jù)已知條件分別求出的首項(xiàng)和公差,然后利用等差數(shù)列的通項(xiàng)公式求解即可;(2)首先利用等差數(shù)列求和公式求出,然后利用裂項(xiàng)相消法和分組求和法求出,進(jìn)而可求出的通項(xiàng)公式,最后利用等差數(shù)列求和公式求解即可.【小問(wèn)1詳解】不妨設(shè)等差數(shù)列的公差為,故,,解得,,從而,即的通項(xiàng)公式為.【小問(wèn)2詳解】由題意可知,,所以,故,因?yàn)楫?dāng)時(shí),;當(dāng)時(shí),,所以,由可知,,即,解得,即值為9.21、(1);(2).【解析】(1)由題設(shè)條件,結(jié)合等差數(shù)列通項(xiàng)公式求基本量d,進(jìn)而寫(xiě)出通項(xiàng)公式.(2)由(1)得,應(yīng)用累加法、錯(cuò)位相減法及等比數(shù)列前n項(xiàng)和公式求的通項(xiàng)公式.【小問(wèn)1詳解】令公差為d,由得:,解得.所以.【小問(wèn)2詳解】,則,累加整理,得:,①,②②-①得:,又滿足上式,故.22、(1);(2).【解析】(1)由焦距為,離心率為結(jié)合性質(zhì),列出關(guān)于的方程組,求出從而求出橢圓方程;(2)設(shè)出直線方程,代入橢圓方程,求出點(diǎn)D、E的坐標(biāo),然后利用|BD|,|BE|,|DE|成等比數(shù)列,即可求解【詳解】(1)由已知,,解得,所以橢圓的方程為(2)由(1)得過(guò)點(diǎn)的直線為,由,得,所以,所以,依題意,因?yàn)椋?,成等比?shù)列,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年學(xué)校教學(xué)管理制度(二篇)
- 開(kāi)學(xué)典禮的演講稿100字(5篇)
- 2024年小學(xué)教學(xué)工作計(jì)劃書(shū)樣本(五篇)
- 2024年小學(xué)六年級(jí)班級(jí)工作計(jì)劃范例(二篇)
- 2024年少先隊(duì)輔導(dǎo)員工作總結(jié)例文(二篇)
- 高效的時(shí)間圖學(xué)習(xí):算法、框架與工具 Towards Efficient Temporal Graph Learning-Algorithms,Frameworks,and Tools
- 2024年少先隊(duì)的活動(dòng)總結(jié)標(biāo)準(zhǔn)范文(二篇)
- 2024年南京房屋租賃合同格式范本(二篇)
- 2024年幼兒園小班教育教學(xué)計(jì)劃范例(三篇)
- 2024年小學(xué)教師個(gè)人科研計(jì)劃模版(六篇)
- LY/T 3354-2023土地退化類型與分級(jí)規(guī)范
- 北京市商業(yè)地產(chǎn)市場(chǎng)細(xì)分研究
- 新媒體視覺(jué)設(shè)計(jì)之新媒體視覺(jué)設(shè)計(jì)基本要素
- 《大衛(wèi)科波菲爾(節(jié)選)》《老人與?!仿?lián)讀課件17張高中語(yǔ)文選擇性必修上冊(cè)
- HSK五級(jí)必過(guò)考前輔導(dǎo)課件
- 自動(dòng)化機(jī)械設(shè)備項(xiàng)目評(píng)價(jià)分析報(bào)告
- 北師大版-八年級(jí)上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)及習(xí)題
- 醫(yī)療美容消費(fèi)服務(wù)合同
- 地球的形成和演化
- 投標(biāo)報(bào)價(jià)得分計(jì)算表Excele
- JT-T 795-2023 事故汽車修復(fù)技術(shù)規(guī)范
評(píng)論
0/150
提交評(píng)論