版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
江蘇省常州第一中學(xué)2025屆高三數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)測(cè)試試題注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè),滿(mǎn)足,則的取值范圍是()A. B. C. D.2.記其中表示不大于x的最大整數(shù),若方程在在有7個(gè)不同的實(shí)數(shù)根,則實(shí)數(shù)k的取值范圍()A. B. C. D.3.是正四面體的面內(nèi)一動(dòng)點(diǎn),為棱中點(diǎn),記與平面成角為定值,若點(diǎn)的軌跡為一段拋物線(xiàn),則()A. B. C. D.4.已知函數(shù),其中,記函數(shù)滿(mǎn)足條件:為事件,則事件發(fā)生的概率為A. B.C. D.5.達(dá)芬奇的經(jīng)典之作《蒙娜麗莎》舉世聞名.如圖,畫(huà)中女子神秘的微笑,,數(shù)百年來(lái)讓無(wú)數(shù)觀賞者人迷.某業(yè)余愛(ài)好者對(duì)《蒙娜麗莎》的縮小影像作品進(jìn)行了粗略測(cè)繪,將畫(huà)中女子的嘴唇近似看作一個(gè)圓弧,在嘴角處作圓弧的切線(xiàn),兩條切線(xiàn)交于點(diǎn),測(cè)得如下數(shù)據(jù):(其中).根據(jù)測(cè)量得到的結(jié)果推算:將《蒙娜麗莎》中女子的嘴唇視作的圓弧對(duì)應(yīng)的圓心角大約等于()A. B. C. D.6.設(shè)函數(shù)在上可導(dǎo),其導(dǎo)函數(shù)為,若函數(shù)在處取得極大值,則函數(shù)的圖象可能是()A. B.C. D.7.窗花是貼在窗紙或窗戶(hù)玻璃上的剪紙,是中國(guó)古老的傳統(tǒng)民間藝術(shù)之一,它歷史悠久,風(fēng)格獨(dú)特,神獸人們喜愛(ài).下圖即是一副窗花,是把一個(gè)邊長(zhǎng)為12的大正方形在四個(gè)角處都剪去邊長(zhǎng)為1的小正方形后剩余的部分,然后在剩余部分中的四個(gè)角處再剪出邊長(zhǎng)全為1的一些小正方形.若在這個(gè)窗花內(nèi)部隨機(jī)取一個(gè)點(diǎn),則該點(diǎn)不落在任何一個(gè)小正方形內(nèi)的概率是()A. B. C. D.8.甲、乙、丙、丁四位同學(xué)利用暑假游玩某風(fēng)景名勝大峽谷,四人各自去景區(qū)的百里絕壁、千丈瀑布、原始森林、遠(yuǎn)古村寨四大景點(diǎn)中的一個(gè),每個(gè)景點(diǎn)去一人.已知:①甲不在遠(yuǎn)古村寨,也不在百里絕壁;②乙不在原始森林,也不在遠(yuǎn)古村寨;③“丙在遠(yuǎn)古村寨”是“甲在原始森林”的充分條件;④丁不在百里絕壁,也不在遠(yuǎn)古村寨.若以上語(yǔ)句都正確,則游玩千丈瀑布景點(diǎn)的同學(xué)是()A.甲 B.乙 C.丙 D.丁9.定義兩種運(yùn)算“★”與“◆”,對(duì)任意,滿(mǎn)足下列運(yùn)算性質(zhì):①★,◆;②()★★,◆◆,則(◆2020)(2020★2018)的值為()A. B. C. D.10.已知a,b是兩條不同的直線(xiàn),α,β是兩個(gè)不同的平面,且a?α,b?β,aβ,bα,則“ab“是“αβ”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件11.已知數(shù)列對(duì)任意的有成立,若,則等于()A. B. C. D.12.已知,是兩條不重合的直線(xiàn),是一個(gè)平面,則下列命題中正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則二、填空題:本題共4小題,每小題5分,共20分。13.在中,角所對(duì)的邊分別為,為的面積,若,,則的形狀為_(kāi)_________,的大小為_(kāi)_________.14.對(duì)定義在上的函數(shù),如果同時(shí)滿(mǎn)足以下兩個(gè)條件:(1)對(duì)任意的總有;(2)當(dāng),,時(shí),總有成立.則稱(chēng)函數(shù)稱(chēng)為G函數(shù).若是定義在上G函數(shù),則實(shí)數(shù)a的取值范圍為_(kāi)_______.15.函數(shù)的定義域?yàn)開(kāi)_____.16.已知是等比數(shù)列,若,,且∥,則______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在極坐標(biāo)系中,曲線(xiàn)的極坐標(biāo)方程為(1)求曲線(xiàn)與極軸所在直線(xiàn)圍成圖形的面積;(2)設(shè)曲線(xiàn)與曲線(xiàn)交于,兩點(diǎn),求.18.(12分)已知函數(shù)的導(dǎo)函數(shù)的兩個(gè)零點(diǎn)為和.(1)求的單調(diào)區(qū)間;(2)若的極小值為,求在區(qū)間上的最大值.19.(12分)已知函數(shù)(,),且對(duì)任意,都有.(Ⅰ)用含的表達(dá)式表示;(Ⅱ)若存在兩個(gè)極值點(diǎn),,且,求出的取值范圍,并證明;(Ⅲ)在(Ⅱ)的條件下,判斷零點(diǎn)的個(gè)數(shù),并說(shuō)明理由.20.(12分)如圖,在平面四邊形中,,,.(1)求;(2)求四邊形面積的最大值.21.(12分)若數(shù)列滿(mǎn)足:對(duì)于任意,均為數(shù)列中的項(xiàng),則稱(chēng)數(shù)列為“數(shù)列”.(1)若數(shù)列的前項(xiàng)和,,試判斷數(shù)列是否為“數(shù)列”?說(shuō)明理由;(2)若公差為的等差數(shù)列為“數(shù)列”,求的取值范圍;(3)若數(shù)列為“數(shù)列”,,且對(duì)于任意,均有,求數(shù)列的通項(xiàng)公式.22.(10分)已知函數(shù).(1)當(dāng)時(shí),解關(guān)于的不等式;(2)若對(duì)任意,都存在,使得不等式成立,求實(shí)數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
首先繪制出可行域,再繪制出目標(biāo)函數(shù),根據(jù)可行域范圍求出目標(biāo)函數(shù)中的取值范圍.【詳解】由題知,滿(mǎn)足,可行域如下圖所示,可知目標(biāo)函數(shù)在點(diǎn)處取得最小值,故目標(biāo)函數(shù)的最小值為,故的取值范圍是.故選:D.【點(diǎn)睛】本題主要考查了線(xiàn)性規(guī)劃中目標(biāo)函數(shù)的取值范圍的問(wèn)題,屬于基礎(chǔ)題.2、D【解析】
做出函數(shù)的圖象,問(wèn)題轉(zhuǎn)化為函數(shù)的圖象在有7個(gè)交點(diǎn),而函數(shù)在上有3個(gè)交點(diǎn),則在上有4個(gè)不同的交點(diǎn),數(shù)形結(jié)合即可求解.【詳解】作出函數(shù)的圖象如圖所示,由圖可知方程在上有3個(gè)不同的實(shí)數(shù)根,則在上有4個(gè)不同的實(shí)數(shù)根,當(dāng)直線(xiàn)經(jīng)過(guò)時(shí),;當(dāng)直線(xiàn)經(jīng)過(guò)時(shí),,可知當(dāng)時(shí),直線(xiàn)與的圖象在上有4個(gè)交點(diǎn),即方程,在上有4個(gè)不同的實(shí)數(shù)根.故選:D.【點(diǎn)睛】本題考查方程根的個(gè)數(shù)求參數(shù),利用函數(shù)零點(diǎn)和方程之間的關(guān)系轉(zhuǎn)化為兩個(gè)函數(shù)的交點(diǎn)是解題的關(guān)鍵,運(yùn)用數(shù)形結(jié)合是解決函數(shù)零點(diǎn)問(wèn)題的基本思想,屬于中檔題.3、B【解析】
設(shè)正四面體的棱長(zhǎng)為,建立空間直角坐標(biāo)系,求出各點(diǎn)的坐標(biāo),求出面的法向量,設(shè)的坐標(biāo),求出向量,求出線(xiàn)面所成角的正弦值,再由角的范圍,結(jié)合為定值,得出為定值,且的軌跡為一段拋物線(xiàn),所以求出坐標(biāo)的關(guān)系,進(jìn)而求出正切值.【詳解】由題意設(shè)四面體的棱長(zhǎng)為,設(shè)為的中點(diǎn),以為坐標(biāo)原點(diǎn),以為軸,以為軸,過(guò)垂直于面的直線(xiàn)為軸,建立如圖所示的空間直角坐標(biāo)系,則可得,,取的三等分點(diǎn)、如圖,則,,,,所以、、、、,由題意設(shè),,和都是等邊三角形,為的中點(diǎn),,,,平面,為平面的一個(gè)法向量,因?yàn)榕c平面所成角為定值,則,由題意可得,因?yàn)榈能壽E為一段拋物線(xiàn)且為定值,則也為定值,,可得,此時(shí),則,.故選:B.【點(diǎn)睛】考查線(xiàn)面所成的角的求法,及正切值為定值時(shí)的情況,屬于中等題.4、D【解析】
由得,分別以為橫縱坐標(biāo)建立如圖所示平面直角坐標(biāo)系,由圖可知,.5、A【解析】
由已知,設(shè).可得.于是可得,進(jìn)而得出結(jié)論.【詳解】解:依題意,設(shè).則.,.設(shè)《蒙娜麗莎》中女子的嘴唇視作的圓弧對(duì)應(yīng)的圓心角為.則,.故選:A.【點(diǎn)睛】本題考查了直角三角形的邊角關(guān)系、三角函數(shù)的單調(diào)性、切線(xiàn)的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.6、B【解析】
由題意首先確定導(dǎo)函數(shù)的符號(hào),然后結(jié)合題意確定函數(shù)在區(qū)間和處函數(shù)的特征即可確定函數(shù)圖像.【詳解】函數(shù)在上可導(dǎo),其導(dǎo)函數(shù)為,且函數(shù)在處取得極大值,當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),.時(shí),,時(shí),,當(dāng)或時(shí),;當(dāng)時(shí),.故選:【點(diǎn)睛】根據(jù)函數(shù)取得極大值,判斷導(dǎo)函數(shù)在極值點(diǎn)附近左側(cè)為正,右側(cè)為負(fù),由正負(fù)情況討論圖像可能成立的選項(xiàng),是判斷圖像問(wèn)題常見(jiàn)方法,有一定難度.7、D【解析】
由幾何概型可知,概率應(yīng)為非小正方形面積與窗花面積的比,即可求解.【詳解】由題,窗花的面積為,其中小正方形的面積為,所以所求概率,故選:D【點(diǎn)睛】本題考查幾何概型的面積公式的應(yīng)用,屬于基礎(chǔ)題.8、D【解析】
根據(jù)演繹推理進(jìn)行判斷.【詳解】由①②④可知甲乙丁都不在遠(yuǎn)古村寨,必有丙同學(xué)去了遠(yuǎn)古村寨,由③可知必有甲去了原始森林,由④可知丁去了千丈瀑布,因此游玩千丈瀑布景點(diǎn)的同學(xué)是?。蔬x:D.【點(diǎn)睛】本題考查演繹推理,掌握演繹推理的定義是解題基礎(chǔ).9、B【解析】
根據(jù)新運(yùn)算的定義分別得出◆2020和2020★2018的值,可得選項(xiàng).【詳解】由()★★,得(+2)★★,又★,所以★,★,★,,以此類(lèi)推,2020★2018★2018,又◆◆,◆,所以◆,◆,◆,,以此類(lèi)推,◆2020,所以(◆2020)(2020★2018),故選:B.【點(diǎn)睛】本題考查定義新運(yùn)算,關(guān)鍵在于理解,運(yùn)用新定義進(jìn)行求值,屬于中檔題.10、D【解析】
根據(jù)面面平行的判定及性質(zhì)求解即可.【詳解】解:a?α,b?β,a∥β,b∥α,由a∥b,不一定有α∥β,α與β可能相交;反之,由α∥β,可得a∥b或a與b異面,∴a,b是兩條不同的直線(xiàn),α,β是兩個(gè)不同的平面,且a?α,b?β,a∥β,b∥α,則“a∥b“是“α∥β”的既不充分也不必要條件.故選:D.【點(diǎn)睛】本題主要考查充分條件與必要條件的判斷,考查面面平行的判定與性質(zhì),屬于基礎(chǔ)題.11、B【解析】
觀察已知條件,對(duì)進(jìn)行化簡(jiǎn),運(yùn)用累加法和裂項(xiàng)法求出結(jié)果.【詳解】已知,則,所以有,,,,兩邊同時(shí)相加得,又因?yàn)?,所?故選:【點(diǎn)睛】本題考查了求數(shù)列某一項(xiàng)的值,運(yùn)用了累加法和裂項(xiàng)法,遇到形如時(shí)就可以采用裂項(xiàng)法進(jìn)行求和,需要掌握數(shù)列中的方法,并能熟練運(yùn)用對(duì)應(yīng)方法求解.12、D【解析】
利用空間位置關(guān)系的判斷及性質(zhì)定理進(jìn)行判斷.【詳解】解:選項(xiàng)A中直線(xiàn),還可能相交或異面,選項(xiàng)B中,還可能異面,選項(xiàng)C,由條件可得或.故選:D.【點(diǎn)睛】本題主要考查直線(xiàn)與平面平行、垂直的性質(zhì)與判定等基礎(chǔ)知識(shí);考查空間想象能力、推理論證能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、等腰三角形【解析】∵∴根據(jù)正弦定理可得,即∴∴∴的形狀為等腰三角形∵∴∴由余弦定理可得∴,即∵∴故答案為等腰三角形,14、【解析】
由不等式恒成立問(wèn)題采用分離變量最值法:對(duì)任意的恒成立,解得,又在,恒成立,即,所以,從而可得.【詳解】因?yàn)槭嵌x在上G函數(shù),所以對(duì)任意的總有,則對(duì)任意的恒成立,解得,當(dāng)時(shí),又因?yàn)椋?,時(shí),總有成立,即恒成立,即恒成立,又此時(shí)的最小值為,即恒成立,又因?yàn)榻獾?故答案為:【點(diǎn)睛】本題是一道函數(shù)新定義題目,考查了不等式恒成立求參數(shù)的取值范圍,考查了學(xué)生分析理解能力,屬于中檔題.15、【解析】
對(duì)數(shù)函數(shù)的定義域需滿(mǎn)足真數(shù)大于0,再由指數(shù)型不等式求解出解集即可.【詳解】對(duì)函數(shù)有意義,即.故答案為:【點(diǎn)睛】本題考查求對(duì)數(shù)函數(shù)的定義域,還考查了指數(shù)型不等式求解,屬于基礎(chǔ)題.16、【解析】若,,且∥,則,由是等比數(shù)列,可知公比為..故答案為.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)【解析】
(1)利用互化公式,將曲線(xiàn)的極坐標(biāo)方程化為直角坐標(biāo)方程,得出曲線(xiàn)與極軸所在直線(xiàn)圍成的圖形是一個(gè)半徑為1的圓周及一個(gè)兩直角邊分別為1與的直角三角形,即可求出面積;(2)聯(lián)立方程組,分別求出和的坐標(biāo),即可求出.【詳解】解:(1)由于的極坐標(biāo)方程為,根據(jù)互化公式得,曲線(xiàn)的直角坐標(biāo)方程為:當(dāng)時(shí),,當(dāng)時(shí),,則曲線(xiàn)與極軸所在直線(xiàn)圍成的圖形,是一個(gè)半徑為1的圓周及一個(gè)兩直角邊分別為1與的直角三角形,∴圍成圖形的面積.(2)由得,其直角坐標(biāo)為,化直角坐標(biāo)方程為,化直角坐標(biāo)方程為,∴,∴.【點(diǎn)睛】本題考查利用互化公式將極坐標(biāo)方程化為直角坐標(biāo)方程,以及聯(lián)立方程組求交點(diǎn)坐標(biāo),考查計(jì)算能力.18、(1)單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是和;(2)最大值是.【解析】
(1)求得,由題意可知和是函數(shù)的兩個(gè)零點(diǎn),根據(jù)函數(shù)的符號(hào)變化可得出的符號(hào)變化,進(jìn)而可得出函數(shù)的單調(diào)遞增區(qū)間和遞減區(qū)間;(2)由(1)中的結(jié)論知,函數(shù)的極小值為,進(jìn)而得出,解出、、的值,然后利用導(dǎo)數(shù)可求得函數(shù)在區(qū)間上的最大值.【詳解】(1),令,因?yàn)?,所以的零點(diǎn)就是的零點(diǎn),且與符號(hào)相同.又因?yàn)?,所以?dāng)時(shí),,即;當(dāng)或時(shí),,即.所以,函數(shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是和;(2)由(1)知,是的極小值點(diǎn),所以有,解得,,,所以.因?yàn)楹瘮?shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是和.所以為函數(shù)的極大值,故在區(qū)間上的最大值取和中的最大者,而,所以函數(shù)在區(qū)間上的最大值是.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間與最值,考查計(jì)算能力,屬于中等題.19、(1)(2)見(jiàn)解析(3)見(jiàn)解析【解析】試題分析:利用賦值法求出關(guān)系,求函數(shù)導(dǎo)數(shù),要求函數(shù)有兩個(gè)極值點(diǎn),只需在內(nèi)有兩個(gè)實(shí)根,利用一元二次方程的根的分布求出的取值范圍,再根據(jù)函數(shù)圖象和極值的大小判斷零點(diǎn)的個(gè)數(shù).試題解析:(Ⅰ)根據(jù)題意:令,可得,所以,經(jīng)驗(yàn)證,可得當(dāng)時(shí),對(duì)任意,都有,所以.(Ⅱ)由(Ⅰ)可知,且,所以,令,要使存在兩個(gè)極值點(diǎn),,則須有有兩個(gè)不相等的正數(shù)根,所以或解得或無(wú)解,所以的取值范圍,可得,由題意知,令,則.而當(dāng)時(shí),,即,所以在上單調(diào)遞減,所以即時(shí),.(Ⅲ)因?yàn)?,.令得,.由(Ⅱ)知時(shí),的對(duì)稱(chēng)軸,,,所以.又,可得,此時(shí),在上單調(diào)遞減,上單調(diào)遞增,上單調(diào)遞減,所以最多只有三個(gè)不同的零點(diǎn).又因?yàn)?,所以在上遞增,即時(shí),恒成立.根據(jù)(2)可知且,所以,即,所以,使得.由,得,又,,所以恰有三個(gè)不同的零點(diǎn):,1,.綜上所述,恰有三個(gè)不同的零點(diǎn).【點(diǎn)睛】利用賦值法求出關(guān)系,利用函數(shù)導(dǎo)數(shù),研究函數(shù)的單調(diào)性,要求函數(shù)有兩個(gè)極值點(diǎn),只需在內(nèi)有兩個(gè)實(shí)根,利用一元二次方程的根的分布求出的取值范圍,利用函數(shù)的導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值,再根據(jù)函數(shù)圖象和極值的大小判斷零點(diǎn)的個(gè)數(shù)是近年高考?jí)狠S題的熱點(diǎn).20、(1);(2)【解析】
(1)根據(jù)同角三角函數(shù)式可求得,結(jié)合正弦和角公式求得,即可求得,進(jìn)而由三角函數(shù)(2)設(shè)根據(jù)余弦定理及基本不等式,可求得的最大值,結(jié)合三角形面積公式可求得的最大值,即可求得四邊形面積的最大值.【詳解】(1),則由同角三角函數(shù)關(guān)系式可得,則,則,所以.(2)設(shè)在中由余弦定理可得,代入可得,由基本不等式可知,即,當(dāng)且僅當(dāng)時(shí)取等號(hào),由三角形面積公式可得,所以四邊形面積的最大值為.【點(diǎn)睛】本題考查了正弦和角公式化簡(jiǎn)三角函數(shù)式的應(yīng)用,余弦定理及不等式式求最值的綜合應(yīng)用,屬于中檔題.21、(1)不是,見(jiàn)解析(2)(3)【解析】
(1)利用遞推關(guān)系求出數(shù)列的通項(xiàng)公式,進(jìn)一步驗(yàn)證時(shí),是否為數(shù)列中的項(xiàng),即可得答案;(2)由題意得,再對(duì)公差進(jìn)行分類(lèi)討論,即可得答案;(3)由題意得數(shù)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年大班保育員個(gè)人工作計(jì)劃模版(七篇)
- 【《湖南酒鬼酒基層員工激勵(lì)制度的問(wèn)題及完善建議》8100字論文】
- 【《海信家居公司投資價(jià)值及投資探究實(shí)例》7500字論文】
- 2024年因病缺課登記制度模版(三篇)
- 新媒體運(yùn)營(yíng)實(shí)習(xí)證明模板(6篇)
- 2024年員工個(gè)人下半年工作計(jì)劃(二篇)
- 2024年工程機(jī)械設(shè)備租賃合同例文(四篇)
- 2024年學(xué)校藝體工作計(jì)劃例文(五篇)
- 2024年學(xué)校衛(wèi)生防疫管理制度例文(五篇)
- 2024年實(shí)驗(yàn)室人員管理制度模版(二篇)
- 《上海市中學(xué)物理課程標(biāo)準(zhǔn)》試行稿
- 奶牛牧場(chǎng)經(jīng)營(yíng)管理課件
- 涉密人員培訓(xùn)和教育
- 存儲(chǔ)設(shè)備擴(kuò)容與數(shù)據(jù)遷移服務(wù)
- smt部門(mén)年工作計(jì)劃
- 關(guān)于數(shù)學(xué)的知識(shí)講座
- 護(hù)士與醫(yī)生的合作與溝通
- 陰莖損傷的護(hù)理課件
- 皮膚科住院醫(yī)師規(guī)范化培訓(xùn)內(nèi)容與標(biāo)準(zhǔn)
- 蘇教版六年級(jí)上冊(cè)數(shù)學(xué)認(rèn)識(shí)百分?jǐn)?shù)(課件)
- 抗美援朝抗美援朝
評(píng)論
0/150
提交評(píng)論