版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆陜西省洛南縣數學高三上期末經典模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在中,角的對邊分別為,若.則角的大小為()A. B. C. D.2.在平面直角坐標系中,已知是圓上兩個動點,且滿足,設到直線的距離之和的最大值為,若數列的前項和恒成立,則實數的取值范圍是()A. B. C. D.3.若集合,,則()A. B. C. D.4.已知函數,,其中為自然對數的底數,若存在實數,使成立,則實數的值為()A. B. C. D.5.函數y=sin2x的圖象可能是A. B.C. D.6.已知是兩條不重合的直線,是兩個不重合的平面,下列命題正確的是()A.若,,,,則B.若,,,則C.若,,,則D.若,,,則7.是恒成立的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件8.如圖所示,三國時代數學家趙爽在《周髀算經》中利用弦圖,給出了勾股定理的絕妙證明.圖中包含四個全等的直角三角形及一個小正方形(陰影),設直角三角形有一內角為,若向弦圖內隨機拋擲500顆米粒(米粒大小忽略不計,?。?,則落在小正方形(陰影)內的米粒數大約為()A.134 B.67 C.182 D.1089.設為拋物線的焦點,,,為拋物線上三點,若,則().A.9 B.6 C. D.10.執(zhí)行如圖所示的程序框圖,則輸出的的值是()A.8 B.32 C.64 D.12811.如圖,已知平面,,、是直線上的兩點,、是平面內的兩點,且,,,,.是平面上的一動點,且直線,與平面所成角相等,則二面角的余弦值的最小值是()A. B. C. D.12.設等差數列的前n項和為,若,則()A. B. C.7 D.2二、填空題:本題共4小題,每小題5分,共20分。13.過動點作圓:的切線,其中為切點,若(為坐標原點),則的最小值是__________.14.已知數列是等比數列,,則__________.15.連續(xù)擲兩次骰子,分別得到的點數作為點的坐標,則點落在圓內的概率為______________.16.現有5人要排成一排照相,其中甲與乙兩人不相鄰,且甲不站在兩端,則不同的排法有____種.(用數字作答)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)團購已成為時下商家和顧客均非常青睞的一種省錢、高校的消費方式,不少商家同時加入多家團購網.現恰有三個團購網站在市開展了團購業(yè)務,市某調查公司為調查這三家團購網站在本市的開展情況,從本市已加入了團購網站的商家中隨機地抽取了50家進行調查,他們加入這三家團購網站的情況如下圖所示.(1)從所調查的50家商家中任選兩家,求他們加入團購網站的數量不相等的概率;(2)從所調查的50家商家中任取兩家,用表示這兩家商家參加的團購網站數量之差的絕對值,求隨機變量的分布列和數學期望;(3)將頻率視為概率,現從市隨機抽取3家已加入團購網站的商家,記其中恰好加入了兩個團購網站的商家數為,試求事件“”的概率.18.(12分)如圖,在四棱錐中,平面,,為的中點.(1)求證:平面;(2)求二面角的余弦值.19.(12分)每年的寒冷天氣都會帶熱“御寒經濟”,以交通業(yè)為例,當天氣太冷時,不少人都會選擇利用手機上的打車軟件在網上預約出租車出行,出租車公司的訂單數就會增加.下表是某出租車公司從出租車的訂單數據中抽取的5天的日平均氣溫(單位:℃)與網上預約出租車訂單數(單位:份);日平均氣溫(℃)642網上預約訂單數100135150185210(1)經數據分析,一天內平均氣溫與該出租車公司網約訂單數(份)成線性相關關系,試建立關于的回歸方程,并預測日平均氣溫為時,該出租車公司的網約訂單數;(2)天氣預報未來5天有3天日平均氣溫不高于,若把這5天的預測數據當成真實的數據,根據表格數據,則從這5天中任意選取2天,求恰有1天網約訂單數不低于210份的概率.附:回歸直線的斜率和截距的最小二乘法估計分別為:20.(12分)已知函數.(1)求不等式的解集;(2)若存在實數,使得不等式成立,求實數的取值范圍.21.(12分)已知橢圓:的離心率為,直線:與以原點為圓心,以橢圓的短半軸長為半徑的圓相切.為左頂點,過點的直線交橢圓于,兩點,直線,分別交直線于,兩點.(1)求橢圓的方程;(2)以線段為直徑的圓是否過定點?若是,寫出所有定點的坐標;若不是,請說明理由.22.(10分)在平面直角坐標系中,曲線(為參數),以坐標原點為極點,軸的正半軸為極軸且取相同的單位長度建立極坐標系,曲線的極坐標方程為.(1)求曲線的普通方程和曲線的普通方程;(2)若P,Q分別為曲線,上的動點,求的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
由正弦定理化簡已知等式可得,結合,可得,結合范圍,可得,可得,即可得解的值.【詳解】解:∵,∴由正弦定理可得:,∵,∴,∵,,∴,∴.故選A.【點睛】本題主要考查了正弦定理在解三角形中的應用,考查了計算能力和轉化思想,屬于基礎題.2、B【解析】
由于到直線的距離和等于中點到此直線距離的二倍,所以只需求中點到此直線距離的最大值即可。再得到中點的軌跡是圓,再通過此圓的圓心到直線距離,半徑和中點到此直線距離的最大值的關系可以求出。再通過裂項的方法求的前項和,即可通過不等式來求解的取值范圍.【詳解】由,得,.設線段的中點,則,在圓上,到直線的距離之和等于點到該直線的距離的兩倍,點到直線距離的最大值為圓心到直線的距離與圓的半徑之和,而圓的圓心到直線的距離為,,,..故選:【點睛】本題考查了向量數量積,點到直線的距離,數列求和等知識,是一道不錯的綜合題.3、B【解析】
根據正弦函數的性質可得集合A,由集合性質表示形式即可求得,進而可知滿足.【詳解】依題意,;而,故,則.故選:B.【點睛】本題考查了集合關系的判斷與應用,集合的包含關系與補集關系的應用,屬于中檔題.4、A【解析】令f(x)﹣g(x)=x+ex﹣a﹣1n(x+1)+4ea﹣x,令y=x﹣ln(x+1),y′=1﹣=,故y=x﹣ln(x+1)在(﹣1,﹣1)上是減函數,(﹣1,+∞)上是增函數,故當x=﹣1時,y有最小值﹣1﹣0=﹣1,而ex﹣a+4ea﹣x≥4,(當且僅當ex﹣a=4ea﹣x,即x=a+ln1時,等號成立);故f(x)﹣g(x)≥3(當且僅當等號同時成立時,等號成立);故x=a+ln1=﹣1,即a=﹣1﹣ln1.故選:A.5、D【解析】分析:先研究函數的奇偶性,再研究函數在上的符號,即可判斷選擇.詳解:令,因為,所以為奇函數,排除選項A,B;因為時,,所以排除選項C,選D.點睛:有關函數圖象的識別問題的常見題型及解題思路:(1)由函數的定義域,判斷圖象的左、右位置,由函數的值域,判斷圖象的上、下位置;(2)由函數的單調性,判斷圖象的變化趨勢;(3)由函數的奇偶性,判斷圖象的對稱性;(4)由函數的周期性,判斷圖象的循環(huán)往復.6、B【解析】
根據空間中線線、線面位置關系,逐項判斷即可得出結果.【詳解】A選項,若,,,,則或與相交;故A錯;B選項,若,,則,又,是兩個不重合的平面,則,故B正確;C選項,若,,則或或與相交,又,是兩個不重合的平面,則或與相交;故C錯;D選項,若,,則或或與相交,又,是兩個不重合的平面,則或與相交;故D錯;故選B【點睛】本題主要考查與線面、線線相關的命題,熟記線線、線面位置關系,即可求解,屬于??碱}型.7、A【解析】
設成立;反之,滿足,但,故選A.8、B【解析】
根據幾何概型的概率公式求出對應面積之比即可得到結論.【詳解】解:設大正方形的邊長為1,則小直角三角形的邊長為,
則小正方形的邊長為,小正方形的面積,
則落在小正方形(陰影)內的米粒數大約為,
故選:B.【點睛】本題主要考查幾何概型的概率的應用,求出對應的面積之比是解決本題的關鍵.9、C【解析】
設,,,由可得,利用定義將用表示即可.【詳解】設,,,由及,得,故,所以.故選:C.【點睛】本題考查利用拋物線定義求焦半徑的問題,考查學生等價轉化的能力,是一道容易題.10、C【解析】
根據給定的程序框圖,逐次計算,結合判斷條件,即可求解.【詳解】由題意,執(zhí)行上述程序框圖,可得第1次循環(huán),滿足判斷條件,;第2次循環(huán),滿足判斷條件,;第3次循環(huán),滿足判斷條件,;第4次循環(huán),滿足判斷條件,;不滿足判斷條件,輸出.故選:C.【點睛】本題主要考查了循環(huán)結構的程序框圖的計算與輸出,其中解答中認真審題,逐次計算,結合判斷條件求解是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.11、B【解析】
為所求的二面角的平面角,由得出,求出在內的軌跡,根據軌跡的特點求出的最大值對應的余弦值【詳解】,,,,同理為直線與平面所成的角,為直線與平面所成的角,又,在平面內,以為軸,以的中垂線為軸建立平面直角坐標系則,設,整理可得:在內的軌跡為為圓心,以為半徑的上半圓平面平面,,為二面角的平面角,當與圓相切時,最大,取得最小值此時故選【點睛】本題主要考查了二面角的平面角及其求法,方法有:定義法、三垂線定理及其逆定理、找公垂面法、射影公式、向量法等,依據題目選擇方法求出結果.12、B【解析】
根據等差數列的性質并結合已知可求出,再利用等差數列性質可得,即可求出結果.【詳解】因為,所以,所以,所以,故選:B【點睛】本題主要考查等差數列的性質及前項和公式,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】解答:由圓的方程可得圓心C的坐標為(2,2),半徑等于1.由M(a,b),則|MN|2=(a?2)2+(b?2)2?12=a2+b2?4a?4b+7,|MO|2=a2+b2.由|MN|=|MO|,得a2+b2?4a?4b+7=a2+b2.整理得:4a+4b?7=0.∴a,b滿足的關系為:4a+4b?7=0.求|MN|的最小值,就是求|MO|的最小值.在直線4a+4b?7=0上取一點到原點距離最小,由“垂線段最短”得,直線OM垂直直線4a+4b?7=0,由點到直線的距離公式得:MN的最小值為:.14、【解析】
根據等比數列通項公式,首先求得,然后求得.【詳解】設的公比為,由,得,故.故答案為:【點睛】本小題主要考查等比數列通項公式的基本量計算,屬于基礎題.15、【解析】
連續(xù)擲兩次骰子共有種結果,列出滿足條件的結果有11種,利用古典概型即得解【詳解】由題意知,連續(xù)擲兩次骰子共有種結果,而滿足條件的結果為:共有11種結果,根據古典概型概率公式,可得所求概率.故答案為:【點睛】本題考查了古典概型的應用,考查了學生綜合分析,數學運算的能力,屬于基礎題.16、36【解析】
先優(yōu)先考慮甲、乙兩人不相鄰的排法,在此條件下,計算甲不排在兩端的排法,最后相減即可得到結果.【詳解】由題意得5人排成一排,甲、乙兩人不相鄰,有種排法,其中甲排在兩端,有種排法,則6人排成一排,甲、乙兩人不相鄰,且甲不排在兩端,共有(種)排法.所以本題答案為36.【點睛】排列、組合問題由于其思想方法獨特,計算量龐大,對結果的檢驗困難,所以在解決這類問題時就要遵循一定的解題原則,如特殊元素、位置優(yōu)先原則、先取后排原則、先分組后分配原則、正難則反原則等,只有這樣我們才能有明確的解題方向.同時解答組合問題時必須心思細膩、考慮周全,這樣才能做到不重不漏,正確解題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)從而的分布列為012;(3).【解析】
(1)運用概率的計算公式求概率分布,再運用數學期望公式進行求解;(2)借助題設條件運用貝努力公式進行分析求解:(1)記所選取額兩家商家加入團購網站的數量相等為事件,則,所以他們加入團購網站的數量不相等的概率為.(2)由題,知的可能取值分別為0,1,2,,,從而的分布列為012.(3)所調查的50家商家中加入了兩個團購網站的商家有25家,將頻率視為概率,則從市中任取一家加入團購網站的商家,他同時加入了兩個團購網站的概率為,所以,所以事件“”的概率為.18、(1)見解析;(2)【解析】
(1)取的中點,連接,根據中位線的方法證明四邊形是平行四邊形.再證明與從而證明平面,從而得到平面即可.(2)以所在的直線為軸建立空間直角坐標系,再求得平面的法向量與平面的法向量進而求得二面角的余弦值即可.【詳解】(1)證明:如圖,取的中點,連接.又為的中點,則是的中位線.所以且.又且,所以且.所以四邊形是平行四邊形.所以.因為,為的中點,所以.因為,所以.因為平面,所以.又,所以平面.所以.又,所以平面.又,所以平面.(2)易知兩兩互相垂直,所以分別以所在的直線為軸建立如圖所示的空間直角坐標系:因為,所以點.則.設平面的法向量為,由,得,令,得平面的一個法向量為;顯然平面的一個法向量為;設二面角的大小為,則.故二面角的余弦值是.【點睛】本題主要考查了線面垂直的證明以及建立空間直角坐標系求解二面角的問題,需要用到線線垂直與線面垂直的轉換以及法向量的求法等.屬于中檔題.19、(1),232;(2)【解析】
(1)根據公式代入求解;(2)先列出基本事件空間,再列出要求的事件,最后求概率即可.【詳解】解:(1)由表格可求出代入公式求出,所以,所以當時,.所以可預測日平均氣溫為時該出租車公司的網約訂單數約為232份.(2)記這5天中氣溫不高于的三天分別為,另外兩天分別記為,則在這5天中任意選取2天有,共10個基本事件,其中恰有1天網約訂單數不低于210份的有,共6個基本事件,所以所求概率,即恰有1天網約訂單數不低于20份的概率為.【點睛】考查線性回歸系數的求法以及古典概型求概率的方法,中檔題.20、(1);(2).【解析】
(1)將函數的解析式表示為分段函數,然后分、、三段求解不等式,綜合可得出不等式的解集;(2)求出函數的最大值,由題意得出,解此不等式即可得出實數的取值范圍
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年戶外廣告牌租賃合同(含稅)2篇
- 二零二五年度工業(yè)用地廠房買賣合同(含項目融資)3篇
- 二手房首付款支付與退款協(xié)議(2024年度)3篇
- 2024版國有企業(yè)勞動合同范本(特殊崗位)3篇
- 隧道工程課程設計過程
- 環(huán)保檢測課程設計
- 脫硫塔課程設計
- 鮮奶工廠設計課程設計
- 瑜伽課程設計中班
- 銀行家課課程設計
- 割接方案的要點、難點及采取的相應措施
- 2025年副護士長競聘演講稿(3篇)
- 2025至2031年中國臺式燃氣灶行業(yè)投資前景及策略咨詢研究報告
- 原發(fā)性腎病綜合征護理
- 第三章第一節(jié)《多變的天氣》說課稿2023-2024學年人教版地理七年級上冊
- 2025年中國電科集團春季招聘高頻重點提升(共500題)附帶答案詳解
- 福建省廈門市2023-2024學年高二上學期期末考試語文試題(解析版)
- 審計資料封面(共6頁)
- 加油站施工情況報告安裝
- 分子標記及遺傳連鎖圖譜
- 防火墻施工組織設計
評論
0/150
提交評論