版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
桂林中學(xué)2025屆數(shù)學(xué)高二上期末聯(lián)考模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在長方體中,,,點分別在棱上,,,則()A. B.C. D.2.在下列各圖中,每個圖的兩個變量具有相關(guān)關(guān)系的圖是()A.(1)(2) B.(1)(3)C.(2) D.(2)(3)3.已知橢圓與橢圓,則下列結(jié)論正確的是()A.長軸長相等 B.短軸長相等C.焦距相等 D.離心率相等4.設(shè)等比數(shù)列,有下列四個命題:①{a②是等比數(shù)列;③是等比數(shù)列;④lgan其中正確命題的個數(shù)是()A.1 B.2C.3 D.45.阿基米德不僅是著名的物理學(xué)家,也是著名的數(shù)學(xué)家,他利用“逼近法”得到橢圓的面積公式,設(shè)橢圓的長半軸長、短半軸長分別為,則橢圓的面積公式為,若橢圓的離心率為,面積為,則橢圓的標(biāo)準(zhǔn)方程為()A.或 B.或C.或 D.或6.已知,,若,則實數(shù)的值為()A. B.C. D.7.設(shè)為數(shù)列的前n項和,,且滿足,若,則()A.2 B.3C.4 D.58.下列語句為命題的是()A. B.你們好!C.下雨了嗎? D.對頂角相等9.已知橢圓C:的左右焦點為F1,F(xiàn)2,離心率為,過F2的直線l交C與A,B兩點,若△AF1B的周長為,則C的方程為()A. B.C. D.10.已知直線和平面,且在上,不在上,則下列判斷錯誤的是()A.若,則存在無數(shù)條直線,使得B.若,則存在無數(shù)條直線,使得C.若存在無數(shù)條直線,使得,則D.若存在無數(shù)條直線,使得,則11.在長方體,,則異面直線與所成角的余弦值是()A. B.C. D.12.設(shè)函數(shù)是定義在上的奇函數(shù),且,當(dāng)時,有恒成立.則不等式的解集為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,甲站在水庫底面上的點處,乙站在水壩斜面上的點處,已知庫底與水壩斜面所成的二面角為,測得從,到庫底與水壩斜面的交線的距離分別為,,若,則甲,乙兩人相距________________14.已知等差數(shù)列中,,,則______________15.對某市“四城同創(chuàng)”活動中100名志愿者的年齡抽樣調(diào)查統(tǒng)計后得到頻率分布直方圖(如圖),但是年齡組為的數(shù)據(jù)不慎丟失,則依據(jù)此圖可估計該市“四城同創(chuàng)”活動中志愿者年齡在的人數(shù)為________16.曲線在處的切線斜率為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知空間中三點,,,設(shè),(1)求向量與向量的夾角的余弦值;(2)若與互相垂直,求實數(shù)的值18.(12分)如圖,已知拋物線的焦點為,點是軸上一定點,過的直線交與兩點.(1)若過的直線交拋物線于,證明縱坐標(biāo)之積為定值;(2)若直線分別交拋物線于另一點,連接交軸于點.證明:成等比數(shù)列.19.(12分)已知數(shù)列的前項和(1)求數(shù)列的通項公式;(2)求數(shù)列的前項和20.(12分)已知橢圓的離心率為,以橢圓兩個焦點與短軸的一個端點為頂點構(gòu)成的三角形的面積為(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)過點作直線l與橢圓C相切于點Q,且直線l斜率大于0,過線段PQ的中點R作直線交橢圓于A,B兩點(點A,B不在y軸上),連結(jié)PA,PB,分別與橢圓交于點M,N,試判斷直線MN的斜率是否為定值;若是,請求出該定值21.(12分)如圖,在四棱錐中,底面ABCD,,,,(1)證明:;(2)當(dāng)PB的長為何值時,直線AB與平面PCD所成角的正弦值為?22.(10分)已知數(shù)列滿足,,.(1)證明:數(shù)列是等比數(shù)列,并求其通項公式;(2)若,求數(shù)列的前項和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】依題意可得,從而得到,即可得到,從而得解;【詳解】解:由長方體的性質(zhì)可得,又,所以,因為,所以,所以,因為,所以;故選:D2、D【解析】根據(jù)圖形可得(1)具有函數(shù)關(guān)系;(2)(3)的散點分布在一條直線或曲線附近,具有相關(guān)關(guān)系;(4)的散點雜亂無章,不具有相關(guān)關(guān)系.【詳解】對(1),所有的點都在曲線上,故具有函數(shù)關(guān)系;對(2),所有的散點分布在一條直線附近,具有相關(guān)關(guān)系;對(3),所有的散點分布在一條曲線附近,具有相關(guān)關(guān)系;對(4),所有的散點雜亂無章,不具有相關(guān)關(guān)系.故選:D.3、C【解析】利用,可得且,即可得出結(jié)論【詳解】∵,且,橢圓與橢圓的關(guān)系是有相等的焦距故選:C4、C【解析】根據(jù)等比數(shù)列的性質(zhì)對四個命題逐一分析,由此確定正確命題的個數(shù).【詳解】是等比數(shù)列可得(為定值)①為常數(shù),故①正確②,故②正確③為常數(shù),故③正確④不一定為常數(shù),故④錯誤故選C.【點睛】本小題主要考查等比數(shù)列的性質(zhì),屬于基礎(chǔ)題.5、B【解析】根據(jù)題意列出的關(guān)系式,即可求得,再分焦點在軸與軸兩種情況寫出標(biāo)準(zhǔn)方程.【詳解】根據(jù)題意,可得,所以橢圓的標(biāo)準(zhǔn)方程為或.故選:B6、A【解析】由,得,從而可得答案.【詳解】解:因為,所以,即,解得.故選:A.7、B【解析】由已知條件可得數(shù)列為首項為2,公差為2的等差數(shù)列,然后根據(jù)結(jié)合等差數(shù)列的求和公式可求得答案【詳解】在等式中,令,可得,所以數(shù)列為首項為2,公差為2的等差數(shù)列,因為,所以,化簡得,,解得或(舍去),故選:B8、D【解析】根據(jù)命題的定義判斷即可.【詳解】因為能夠判斷真假的語句叫作命題,所以ABC錯誤,D正確.故選:D9、A【解析】根據(jù)橢圓的定義可得△AF1B的周長為4a,由題意求出a,結(jié)合離心率計算即可求出c,再求出b即可.【詳解】由橢圓的定義知,△AF1B的周長為,又△AF1B的周長為4,則,,,,,所以方程為,故選:A.10、D【解析】根據(jù)直線和直線,直線和平面的位置關(guān)系依次判斷每一個選項得到答案.【詳解】若,則平行于過的平面與的交線,當(dāng)時,,則存在無數(shù)條直線,使得,A正確;若,垂直于平面中的所有直線,則存在無數(shù)條直線,使得,B正確;若存在無數(shù)條直線,使得,,,則,C正確;當(dāng)時,存在無數(shù)條直線,使得,D錯誤.故選:D.11、A【解析】在長方體中建立空間直角坐標(biāo)系,求出相關(guān)點的坐標(biāo),進而求得向量,的坐標(biāo),利用向量的夾角公式即可求得答案.詳解】如圖,由題意可知DA,DC,兩兩垂直,則以D為原點,,的方向分別為x,y,z軸的正方向,建立空間直角坐標(biāo)系.設(shè),則,,,,,,從而,故異面直線與所成角的余弦值是,故選:A.12、B【解析】根據(jù)當(dāng)時,可知在上單調(diào)遞減,結(jié)合可確定在上的解集;根據(jù)奇偶性可確定在上的解集;由此可確定結(jié)果.【詳解】,當(dāng)時,,在上單調(diào)遞減,,,在上的解集為,即在上的解集為;又為上的奇函數(shù),,為上的偶函數(shù),在上的解集為,即在上的解集為;當(dāng)時,,不合題意;綜上所述:的解集為.故選:.【點睛】本題考查利用函數(shù)的單調(diào)性和奇偶性求解函數(shù)不等式的問題,關(guān)鍵是能夠通過構(gòu)造函數(shù)的方式,確定所構(gòu)造函數(shù)的單調(diào)性和奇偶性,進而根據(jù)零點確定不等式的解集.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】首先構(gòu)造二面角的平面角,如圖,再分別在和中求解.【詳解】作,且,連結(jié),,,,平面且,四邊形時平行四邊形,,平面,平面,中,,中,.故答案為:14、【解析】設(shè)等差數(shù)列的公差為,依題意得到方程,求出公差,再根據(jù)等差數(shù)列通項公式計算可得;【詳解】解:設(shè)等差數(shù)列的公差為,因為,,所以,所以,所以故答案為:15、【解析】首先根據(jù)頻率分布直方圖計算出年齡在的頻率,從而可計算出年齡在的人數(shù).【詳解】年齡在的頻率為,所以年齡在的人數(shù)為.故答案為:.16、##【解析】首先求得的導(dǎo)數(shù),由導(dǎo)數(shù)的幾何意義可得切線的斜率.【詳解】因為函數(shù)的導(dǎo)數(shù)為,所以可得在處的切線斜率,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)或.【解析】(1)坐標(biāo)表示出、,利用向量夾角的坐標(biāo)表示求夾角余弦值;(2)坐標(biāo)表示出k+、k-2,利用向量垂直的坐標(biāo)表示列方程求的值.【詳解】由題設(shè),=(1,1,0),=(-1,0,2)(1)cosθ=,所以和的夾角余弦值為.(2)k+=k(1,1,0)+(-1,0,2)=(k-1,k,2),k-2=(k+2,k,-4),又(k+)⊥(k-2),則(k-1,k,2)·(k+2,k,-4)=(k-1)(k+2)+k2-8=2k2+k-10=0,解得k=-或2.18、(1)證明見解析(2)證明見解析【解析】(1)設(shè)直線方程為,聯(lián)立拋物線方程用韋達定理可得;(2)借助(1)中結(jié)論可得各點縱坐標(biāo)之積,進而得到F、T、Q三點橫坐標(biāo)關(guān)系,然后可證.【小問1詳解】顯然過T的直線斜率不為0,設(shè)方程為,聯(lián)立,消元得到,.【小問2詳解】由(1)設(shè),因為AP與BQ均過T(t,0)點,可知,又AB過F點,所以,如圖:,,設(shè)M(n,0),由(1)類比可得.,且,成等比數(shù)列.19、(1)(2)【解析】(1)利用與的關(guān)系求數(shù)列的通項公式;(2)利用錯位相減法求和即可.【小問1詳解】因為,故當(dāng)時,,兩式相減得,又由題設(shè)可得,從而的通項公式為:;【小問2詳解】因為,,兩式相減得:所以.20、(1)(2)是,【解析】(1)根據(jù)離心率以及橢圓兩個焦點與短軸的一個端點為頂點構(gòu)成的三角形的面積列出等式即可求解;(2)設(shè)出相關(guān)直線與相關(guān)點的坐標(biāo),直線與橢圓聯(lián)立,點的坐標(biāo)配合斜率公式化簡,再運用韋達理化簡可證明.【小問1詳解】由題意得,解得,則橢圓C的標(biāo)準(zhǔn)方程為【小問2詳解】設(shè)切線PQ的方程為,,,,,由,消去y得①,則,解得或(舍去),將代入①得,,解得,則,所以,又R為PQ中點,則,因為PA,PB斜率都存在,不妨設(shè),,由①可得,所以,,同理,,則,又R,A,B三點共線,則,化簡得,所以.21、(1)證明見解析(2)【解析】(1)由線面垂直的判斷定理證明平面PAB,再由線面垂直的性質(zhì)定理即可證明;(2)以A為原點,AB,AC,AP分別為x軸,y軸,z軸,建立空間直角坐標(biāo)系,設(shè),求出平面PCD的法向量的坐標(biāo),根據(jù)直線AB與平面PCD所成角的正弦值為,利用向量法可求得,從而可求解PB的長.【小問1詳解】證明:因為底面ABCD,又平面ABCD,所以,又,,AB,平面PAB,所以平面PAB,又平面PAB,所以;小問2詳解】解:因為底面ABCD,,所以以A為原點,AB,AC,AP分別為x軸,y軸,z軸,建立如圖所示空間直角坐標(biāo)系,因為,,,所以,則,,所以,,,,設(shè),則
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年學(xué)校工作考核細(xì)則范本(三篇)
- 2024年學(xué)校后勤學(xué)期工作計劃范文(二篇)
- 2024年發(fā)包工程和臨時工安全管理制度范本(三篇)
- 2024年學(xué)校周周清制度(二篇)
- 2024年小學(xué)減負(fù)工作計劃例文(四篇)
- GSMA:2024年移動互聯(lián)網(wǎng)連接報告 The State of Mobile Internet Connectivity 2024
- 2024年家具采購合同參考樣本(四篇)
- 2024年商業(yè)租房合同范本(二篇)
- 2024年安全生產(chǎn)工作總結(jié)參考樣本(三篇)
- 2024年四年級數(shù)學(xué)教學(xué)工作計劃樣本(四篇)
- 機務(wù)安全生產(chǎn)培訓(xùn)
- 舞蹈就業(yè)能力展示
- 服裝行業(yè)國際競爭對手分析
- (高清版)DZT 0430-2023 固體礦產(chǎn)資源儲量核實報告編寫規(guī)范
- 邯鄲學(xué)步(成語故事)-高瑞佳
- 煙花爆竹經(jīng)營企業(yè)安全風(fēng)險分級管控與事故隱患排查治理雙重預(yù)防機制構(gòu)建方案指南
- 設(shè)計開發(fā)記錄表及設(shè)計開發(fā)各過程表單
- 商鋪宣傳方案
- 新概念英語第一冊Lesson5-6練習(xí)題
- 班組長的自我成長與發(fā)展課件
- ISO11898-3中文翻譯完整
評論
0/150
提交評論