浙江省安吉縣上墅私立高級中學(xué)2025屆高二上數(shù)學(xué)期末聯(lián)考試題含解析_第1頁
浙江省安吉縣上墅私立高級中學(xué)2025屆高二上數(shù)學(xué)期末聯(lián)考試題含解析_第2頁
浙江省安吉縣上墅私立高級中學(xué)2025屆高二上數(shù)學(xué)期末聯(lián)考試題含解析_第3頁
浙江省安吉縣上墅私立高級中學(xué)2025屆高二上數(shù)學(xué)期末聯(lián)考試題含解析_第4頁
浙江省安吉縣上墅私立高級中學(xué)2025屆高二上數(shù)學(xué)期末聯(lián)考試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

浙江省安吉縣上墅私立高級中學(xué)2025屆高二上數(shù)學(xué)期末聯(lián)考試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在等差數(shù)列中,若,,則公差d=()A. B.C.3 D.-32.已知直線:恒過點,過點作直線與圓:相交于A,B兩點,則的最小值為()A. B.2C.4 D.3.已知函數(shù)(為自然對數(shù)的底數(shù)),若的零點為,極值點為,則()A. B.0C.1 D.24.在一個正方體中,為正方形四邊上的動點,為底面正方形的中心,分別為中點,點為平面內(nèi)一點,線段與互相平分,則滿足的實數(shù)的值有A.0個 B.1個C.2個 D.3個5.已知曲線,下列命題錯誤的是()A.若,則是橢圓,其焦點在軸上B.若,則是圓,其半徑為C.若,則是雙曲線,其漸近線方程為D.若,,為上任意一點,,為曲線的兩個焦點,則6.在正方體中,為棱的中點,為棱的中點,則直線與平面所成角的正弦值為()A. B.C. D.7.已知橢圓的左、右焦點分別為,點是橢圓上的一點,點是線段的中點,為坐標(biāo)原點,若,則()A.3 B.4C.6 D.118.在四棱錐中,底面是正方形,為的中點,若,則()A. B.C. D.9.某研究所為了研究近幾年中國留學(xué)生回國人數(shù)的情況,對2014至2018年留學(xué)生回國人數(shù)進行了統(tǒng)計,數(shù)據(jù)如下表:年份20142015201620172018年份代碼12345留學(xué)生回國人數(shù)/萬36.540.943.348.151.9根據(jù)上述統(tǒng)計數(shù)據(jù)求得留學(xué)生回國人數(shù)(單位:萬)與年份代碼滿足的線性回歸方程為,利用回歸方程預(yù)測年留學(xué)生回國人數(shù)為()A.63.14萬 B.64.72萬C.66.81萬 D.66.94萬10.已知點在平面內(nèi),是平面的一個法向量,則下列各點在平面內(nèi)的是()A. B.C. D.11.已知數(shù)列滿足,且,則的值為()A.3 B.C. D.12.已知向量,,且,則值是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.過拋物線的焦點F作斜率大于0的直線l交拋物線于A,B兩點(A在B的上方),且l與準(zhǔn)線交于點C,若,則_________.14.矩形ABCD中,,在CD邊上任取一點M,則的最大邊是AB的概率為______15.已知拋物線:,過焦點作傾斜角為的直線與交于,兩點,,在的準(zhǔn)線上的投影分別為,兩點,則__________.16.函數(shù)的導(dǎo)數(shù)_________________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列的前n項和為,且滿足(1)證明數(shù)列是等比數(shù)列;(2)若數(shù)列滿足,證明數(shù)列的前n項和18.(12分)已知正項等差數(shù)列滿足,(1)求數(shù)列的通項公式;(2)設(shè),求數(shù)列的前項和19.(12分)中國共產(chǎn)黨建黨100周年華誕之際,某高校積極響應(yīng)黨和國家的號召,通過“增強防疫意識,激發(fā)愛國情懷”知識競賽活動,來回顧中國共產(chǎn)黨從成立到發(fā)展壯大的心路歷程,表達對建黨100周年以來的豐功偉績的傳頌.教務(wù)處為了解學(xué)生對相關(guān)知識的掌握情況,隨機抽取了100名學(xué)生的競賽成績,并以此為樣本繪制了如下樣本頻率分布直方圖(1)求值并估計中位數(shù)所在區(qū)間(2)需要從參賽選手中選出6人代表學(xué)校參與省里的此類比賽,你認(rèn)為怎么選最合理,并說明理由20.(12分)已知函數(shù)f(x)=x3+ax2+bx+c,曲線y=f(x)在點x=1處的切線為l:3x-y+1=0,若x=時,y=f(x)有極值(1)求a,b,c的值;(2)求y=f(x)在區(qū)間[-3,1]上最大值和最小值21.(12分)已知圓的圓心在直線,且與直線相切于點.(1)求圓的方程;(2)直線過點且與圓相交,所得弦長為,求直線的方程.22.(10分)如圖所示,、分別為橢圓的左、右焦點,A,B為兩個頂點,已知橢圓C上的點到、兩點的距離之和為4.(1)求a的值和橢圓C的方程;(2)過橢圓C的焦點作AB的平行線交橢圓于P,Q,求的面積

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】由等差數(shù)列的通項公式計算【詳解】因為,,所以.故選:C【點睛】本題考查等差數(shù)列的通項公式,利用等差數(shù)列通項公式可得,2、A【解析】根據(jù)將最小值問題轉(zhuǎn)化為d取得最大值問題,然后結(jié)合圖形可解.【詳解】將,變形為,故直線恒過點,圓心,半徑,已知點P在圓內(nèi),過點作直線與圓相交于A,兩點,記圓心到直線的距離為d,則,所以當(dāng)d取得最大值時,有最小值,結(jié)合圖形易知,當(dāng)直線與線段垂直的時候,d取得最大值,即取得最小值,此時,所以.故選:A.3、C【解析】令可求得其零點,即的值,再利用導(dǎo)數(shù)可求得其極值點,即的值,從而可得答案【詳解】解:,當(dāng)時,,即,解得;當(dāng)時,恒成立,的零點為又當(dāng)時,為增函數(shù),故在,上無極值點;當(dāng)時,,,當(dāng)時,,當(dāng)時,,時,取到極小值,即的極值點,故選:C【點睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的極值,考查函數(shù)的零點,考查分段函數(shù)的應(yīng)用,突出分析運算能力的考查,屬于中檔題4、C【解析】因為線段D1Q與OP互相平分,所以四點O,Q,P,D1共面,且四邊形OQPD1為平行四邊形.若P在線段C1D1上時,Q一定在線段ON上運動,只有當(dāng)P為C1D1的中點時,Q與點M重合,此時λ=1,符合題意若P在線段C1B1與線段B1A1上時,在平面ABCD找不到符合條件Q;在P在線段D1A1上時,點Q在直線OM上運動,只有當(dāng)P為線段D1A1的中點時,點Q與點M重合,此時λ=0符合題意,所以符合條件的λ值有兩個故選C.5、D【解析】根據(jù)橢圓和雙曲線的性質(zhì)以及定義逐一判斷即可.【詳解】曲線,若,則是橢圓,其焦點在軸上,故A正確;若,則,即是圓,半徑為,故B正確;若,則是雙曲線,當(dāng),則漸近線方程為,當(dāng),則漸近線方程為,故C正確;若,,則是雙曲線,其焦點在軸上,由雙曲線的定義可知,,故D錯誤;故選:D6、D【解析】建立空間直角坐標(biāo)系,計算平面的法向量,利用線面角的向量公式即得解【詳解】不妨設(shè)正方體的棱長為2,連接,以為坐標(biāo)原點如圖建立空間直角坐標(biāo)系,則,,,,,,由于平面,平面,故又正方形,故平面故平面,所以為平面的一個法向量,故直線與平面所成角正弦值為.故選:D7、A【解析】利用橢圓的定義可得,再結(jié)合條件即求.【詳解】由橢圓的定義可知,因為,所以,因為點分別是線段,的中點,所以是的中位線,所以.故選:A.8、C【解析】由為的中點,根據(jù)向量的運算法則,可得,即可求解.【詳解】由底面是正方形,E為的中點,且,根據(jù)向量的運算法則,可得.故選:C.9、D【解析】先求出樣本點的中心,代入線性回歸方程即可求出,再將代入線性回歸方程即可得到結(jié)果【詳解】由題意知:,,所以樣本點的中心為,所以,解得:,可得線性回歸方程為,年對應(yīng)的年份代碼為,令,則,所以預(yù)測2022年留學(xué)生回國人數(shù)為66.94萬,故選:D.10、B【解析】設(shè)平面內(nèi)的一點為,由可得,進而可得滿足的方程,將選項代入檢驗即可得正確選項.【詳解】設(shè)平面內(nèi)的一點為(不與點重合),則,因為是平面的一個法向量,所以,所以,即,對于A:,故選項A不正確;對于B:,故選項B正確;對于C:,故選項C不正確;對于D:,故選項D不正確,故選:B.11、B【解析】根據(jù)題意,依次求出,觀察規(guī)律,進而求出數(shù)列的周期,然后通過周期性求得答案.【詳解】因為數(shù)列滿足,,所以,所以,,,可知數(shù)列具有周期性,周期為3,,所以.故選:B12、A【解析】求出向量,的坐標(biāo),利用向量數(shù)量積坐標(biāo)表示即可求解.【詳解】因為向量,,所以,,因為,所以,解得:,故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】分別過A,B作準(zhǔn)線的垂線,垂足分別為,,由可求.【詳解】分別過A,B作準(zhǔn)線的垂線,垂足分別為,,設(shè),,則,∴,∴.故答案為:2.14、【解析】先利用勾股定理得出滿足條件的長度,再結(jié)合幾何概型的概率公式得出答案.【詳解】設(shè),當(dāng)時,,;當(dāng)時,,所以當(dāng)?shù)降木嚯x都大于時,的最大邊是AB,所以的最大邊是AB的概率為.故答案為:15、【解析】設(shè),則,將直線方程與拋物線方程聯(lián)立,結(jié)合韋達定理即得.【詳解】由拋物線:可知則焦點坐標(biāo)為,∴過焦點且斜率為的直線方程為,化簡可得,設(shè),則,由可得,所以則故答案為:16、.【解析】根據(jù)初等函數(shù)的導(dǎo)數(shù)法則和導(dǎo)數(shù)的四則運算法則,準(zhǔn)確運算,即可求解.【詳解】由題意,函數(shù),可得.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)證明見解析【解析】(1)可根據(jù)已知的與的遞推關(guān)系,利用求解出數(shù)列的首項,然后當(dāng)時,遞推做差,利用消掉,即可得到與之間的關(guān)系,從而完成證明;(2)利用第(1)問求解出的數(shù)列的通項公式,帶入到中,再使用錯位相減法進行求和,根據(jù)最后計算的結(jié)果與比較即可完成證明.【小問1詳解】由題意得,當(dāng)時,,∴,當(dāng)時,,∴,∵,∴,于是有,故數(shù)列是以3為首項,3為公比的等比數(shù)列.得證.【小問2詳解】由(1)可知,∴,,①,②,②?①得:,∴,∵,故,∴得證.18、(1);(2).【解析】(1)設(shè)數(shù)首項為,公差為,由,,列出方程組,求得,,即可求出數(shù)列的通項公式;(2),利用列項相消求和法即可得出答案.【詳解】(1)設(shè)數(shù)首項為,公差為,由題得.解得,,(負(fù)值舍去)所以;(2)由(1)得則.19、(1);中位數(shù)所在區(qū)間(2)選90分以上的人去參賽;答案見解析【解析】(1)根據(jù)頻率分布直方圖中,所有小矩形面積和為1,即可求得a值,根據(jù)各組的頻率,即可分析中位數(shù)所在區(qū)間.(2)計算可得之間共有6人,滿足題意,分析即可得答案.【小問1詳解】,解得成績在區(qū)間上的頻率為,,所以中位數(shù)所在區(qū)間,【小問2詳解】選成績最好的同學(xué)去參賽,分?jǐn)?shù)在之間共有人,所以選90分以上的人去參賽.(其它方案如果合理也可以給分)20、(1);(2)最大值為,最小值為.【解析】(1)求導(dǎo),結(jié)合導(dǎo)數(shù)的幾何意義列方程組,即可得解;(2)求導(dǎo),確定函數(shù)的單調(diào)性和極值,再和端點值比較即可得解.【詳解】(1)由題意,,因為曲線y=f(x)在點x=1處的切線為l:3x-y+1=0,所以,,又當(dāng)時,y=f(x)有極值,所以,所以;(2)由(1)得,,所以當(dāng)時,,函數(shù)單調(diào)遞增;當(dāng)時,,函數(shù)單調(diào)遞減;又,,,,所以在[-3,1]上的最大值為,最小值為.21、(1)(2)或【解析】(1)分析可知圓心在直線上,聯(lián)立兩直線方程,可得出圓心的坐標(biāo),計算出圓的半徑,即可得出圓的方程;(2)利用勾股定理求出圓心到直線的距離,然后對直線的斜率是否存在進行分類討論,設(shè)出直線的方程,利用點到直線的距離公式求出參數(shù),即可得出直線的方程.【小問1詳解】解:過點且與直線垂直的直線的方程為,由題意可知,圓心即為直線與直線的交點,聯(lián)立,解得,故圓的半徑為,因此,圓的方程為.【小問2詳解】解:由勾股定理可知,圓心到直線的距離為.當(dāng)直線的斜率不存在時,直線的方程為,圓心到直線的距離為,滿足條件;當(dāng)直線的斜率存在時,設(shè)直線的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論