版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
新疆昌吉州教育共同體2025屆數學高二上期末質量跟蹤監(jiān)視模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,且,則實數的值為()A. B.3C.4 D.62.已知圓上有三個點到直線的距離等于1,則的值為()A. B.C. D.13.執(zhí)行如圖所示的程序框圖,則輸出的A. B.C. D.4.已知點在拋物線:上,點為拋物線的焦點,,點P到y(tǒng)軸的距離為4,則拋物線C的方程為()A. B.C. D.5.雙曲線:的一條漸近線與直線垂直,則它的離心率為()A. B.C. D.6.已知F1(-1,0),F2(1,0)是橢圓的兩個焦點,過F1的直線l交橢圓于M,N兩點,若△MF2N的周長為8,則橢圓方程為()A. B.C. D.7.已知是上的單調增函數,則的取值范圍是A.﹣1b2 B.﹣1b2C.b﹣2或b2 D.b﹣1或b28.等軸雙曲線漸近線是()A. B.C. D.9.南宋數學家楊輝在《詳解九章算法》和《算法通變本末》中,提出了一些新的垛積公式,他所討論的高階等差數列與一般等差數列不同,前后兩項之差并不相等,而是逐項差數之差或者高次差相等.對這類高階等差數列的研究,在楊輝之后一般稱為“垛積術”.現有一個高階等差數列,其前6項分別為1,5,11,21,37,61,則該數列的第7項為()A.95 B.131C.139 D.14110.某校開學“迎新”活動中要把3名男生,2名女生安排在5個崗位,每人安排一個崗位,每個崗位安排一人,其中甲崗位不能安排女生,則安排方法的種數為()A.72 B.56C.48 D.3611.已知,是圓上的兩點,是直線上一點,若存在點,,,使得,則實數的取值范圍是()A. B.C. D.12.在直三棱柱中,底面是等腰直角三角形,,則與平面所成角的正弦值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設,滿足約束條件,則的最大值是_________.14.橢圓的左焦點為,M為橢圓上的一點,N是的中點,O為原點,若,則______15.已知是定義在上的奇函數,當時,則當時___________.16.已知拋物線的焦點F為,過點F的直線交該拋物線的準線于點A,與該拋物線的一個交點為B,且,則______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知:,:.(1)當時,求實數的取值范圍;(2)若是的充分不必要條件,求實數的取值范圍.18.(12分)已知(1)若函數在上有極值,求實數a的取值范圍;(2)已知方程有兩個不等實根,證明:(注:是自然對數的底數)19.(12分)已知橢圓的兩焦點為、,P為橢圓上一點,且(1)求此橢圓的方程;(2)若點P在第二象限,,求的面積20.(12分)如圖,在正方體中,是棱的中點.(1)試判斷直線與平面的位置關系,并說明理由;(2)求證:直線面.21.(12分)如圖,在四棱錐中,底面是菱形,平面,,,分別為,的中點(1)證明:平面;(2)證明:平面22.(10分)已知拋物線的焦點為,點在第一象限且為拋物線上一點,點在點右側,且△恰為等邊三角形(1)求拋物線的方程;(2)若直線與交于兩點,向量的夾角為(其中為坐標原點),求實數的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據給定條件利用空間向量垂直的坐標表示計算作答.詳解】因,且,則有,解得,所以實數的值為3.故選:B2、A【解析】求出圓心和半徑,由題意可得圓心到直線的距離,列方程即可求得的值.【詳解】由圓可得圓心,半徑,因為圓上有三個點到直線的距離等于1,所以圓心到直線的距離,可得:,故選:A.3、B【解析】根據輸入的條件執(zhí)行循環(huán),并且每一次都要判斷結論是或否,直至退出循環(huán).【詳解】,,,;,【點睛】本題考查程序框圖,執(zhí)行循環(huán),屬于基礎題.4、D【解析】由拋物線定義可得,注意開口方向.詳解】設∵點P到y(tǒng)軸的距離是4∴∵,∴.得:.故選:D.5、A【解析】先利用直線的斜率判定一條漸近線與直線垂直,求出,再利用雙曲線的離心率公式和進行求解.【詳解】因為直線的斜率為,所以雙曲線的一條漸近線與直線垂直,所以,即,則雙曲線的離心率.故選:A.卷II(非選擇題6、A【解析】由題得c=1,再根據△MF2N的周長=4a=8得a=2,進而求出b的值得解.【詳解】∵F1(-1,0),F2(1,0)是橢圓的兩個焦點,∴c=1,又根據橢圓的定義,△MF2N的周長=4a=8,得a=2,進而得b=,所以橢圓方程為.故答案為A【點睛】本題主要考查橢圓的定義和橢圓方程的求法,意在考查學生對這些知識的掌握水平和分析推理能力.7、A【解析】利用三次函數的單調性,通過其導數進行研究,求出導數,利用其導數恒大于0即可解決問題【詳解】∵∴∵函數是上的單調增函數∴在上恒成立∴,即.∴故選A.【點睛】可導函數在某一區(qū)間上是單調函數,實際上就是在該區(qū)間上(或)(在該區(qū)間的任意子區(qū)間都不恒等于0)恒成立,然后分離參數,轉化為求函數的最值問題,從而獲得參數的取值范圍,本題是根據相應的二次方程的判別式來進行求解.8、A【解析】對等軸雙曲線的焦點的位置進行分類討論,可得出等軸雙曲線的漸近線方程.【詳解】因為,若雙曲線的焦點在軸上,則等軸雙曲線的漸近線方程為;若雙曲線的焦點在軸上,則等軸雙曲線的漸近線方程為.綜上所述,等軸雙曲線的漸近線方程為.故選:A.9、A【解析】利用已知條件,推出數列的差數的差組成的數列是等差數列,轉化求解即可【詳解】由題意可知,1,5,11,21,37,61,……,的差的數列為4,6,10,16,24,……,則這個數列的差組成的數列為:2,4,6,8,……,是一個等差數列,設原數列的第7項為,則,解得,所以原數列的第7項為95,故選:A10、A【解析】以位置優(yōu)先法去安排即可解決.【詳解】第一步:安排甲崗位,由3名男生中任選1人,有3種方法;第二步:安排余下的4個崗位,由2名女生和余下的2名男生任意安排即可,有種方法故安排方法的種數為故選:A11、B【解析】確定在以為直徑的圓上,,根據均值不等式得到圓上的點到的最大距離為,得到,解得答案.【詳解】,故在以為直徑的圓上,設中點為,則,圓上的點到的最大距離為,,當時等號成立.直線到原點的距離為,故.故選:B.12、C【解析】取的中點,連接,易證平面,進一步得到線面角,再解三角形即可.【詳解】如圖,取的中點,連接,三棱柱為直三棱柱,則平面,又平面,所以,又由題意可知為等腰直角三角形,且為斜邊的中點,從而,而平面,平面,且,所以平面,則為與平面所成的角.在直角中,.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、5【解析】由題可知表示點與點連線的斜率,再畫出可行域結合圖像知知.【詳解】x,y滿足約束條件,滿足的可行域如圖:則的幾何意義是可行域內的點與(﹣3,﹣2)連線的斜率,通過分析圖像得到當經過A時,目標函數取得最大值由可得A(﹣2,3),則的最大值是:故答案為5【點睛】(1)在平面直角坐標系內作出可行域(2)考慮目標函數的幾何意義,將目標函數進行變形.常見的類型有截距型(型)、斜率型(型)和距離型(型)(3)確定最優(yōu)解:根據目標函數的類型,并結合可行域確定最優(yōu)解(4)求最值:將最優(yōu)解代入目標函數即可求出最大值或最小值14、4【解析】根據三角形的中位線定理,結合橢圓的定義即可求得答案.【詳解】橢圓的左焦點為,如圖,設右焦點為,則,由N是的中點,O為得中點,,故,又,所以,故答案為:415、【解析】當時,利用及求得函數的解析式.【詳解】當時,,由于函數是奇函數,故.【點睛】本小題主要考查已知函數的奇偶性以及軸一側的解析式,求另一側的解析式,屬于基礎題.16、【解析】作垂直于準線,垂足為,準線與軸交于點,根據已知條件,利用幾何方法,結合拋物線的定義得到答案.【詳解】拋物線的焦點坐標,準線方程,作垂直于準線于,準線與軸交于點,則,∴.∵,∴,由拋物線的定義得,∴.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)將代入即可求解;(2)首先結合已知條件分別求出命題和的解,寫出,然后利用充分不必要的特征即可求解.【詳解】(1)由題意可知,,解得,故實數的取值范圍為;(2)由,解得或,由,解得,故命題:或;命題:,從而:或,因為是的充分不必要條件,所以或或,從而,解得,故實數的取值范圍為.18、(1)(2)證明見解析.【解析】(1)利用導數判斷出在上單增,在上單減,在處取得唯一的極值,列不等式組,即可求出實數a的取值范圍;(2)記函數,把證明,轉化為只需證明,用分析法證明即可.【小問1詳解】,定義域為,.令,解得:;令,解得:所以在上單增,在上單減,在處取得唯一的極值.要使函數在上有極值,只需,解得:,即實數a的取值范圍為.【小問2詳解】記函數.則函數有兩個不等實根.因為,,兩式相減得,,兩式相加得,.因為,所以要證,只需證明,只需證明,只需證明,.證.設,只需證明.記,則,所以在上2單增,所以,所以,即,所以.即證.【點睛】導數是研究函數的單調性、極值(最值)最有效的工具,而函數是高中數學中重要的知識點,對導數的應用的考查主要從以下幾個角度進行:(1)考查導數的幾何意義,往往與解析幾何、微積分相聯系;(2)利用導數求函數的單調區(qū)間,判斷單調性;已知單調性,求參數;(3)利用導數求函數的最值(極值),解決生活中的優(yōu)化問題;(4)利用導數證明不等式19、(1);(2).【解析】(1)由題可得,根據橢圓的定義,求得,進而求得的值,即可求解;(2)由題可得直線方程為,聯立橢圓方程可得點P,利用三角形的面積公式,即求.【小問1詳解】設橢圓的標準方程為,焦距為,由題可得,,所以,可得,即,則,所以橢圓的標準方程為【小問2詳解】設點坐標為,,,∵,∴所在的直線方程為,則解方程組,可得,∴.20、(1)平面AEC,理由見解析(2)證明見解析【解析】(1)以線面平行的判定定理去證明直線與平面平行即可;(2)以線面垂直的判定定理去證明直線面即可.【小問1詳解】連接BD,設,連接OE.在中,O、E分別是BD、的中點,則.因為直線OE在平面AEC上,而直線不在平面AEC上,根據直線與平面平行的判定定理,得到直線平面AEC.【小問2詳解】正方體中,故,又,故同理故,又,故又根據直線與平面垂直的判定定理,得直線平面.21、(1)證明見解析;(2)證明見解析.【解析】(1)取中點,結合三角形中位線性質可證得四邊形為平行四邊形,由此得到,由線面平行判定定理可證得結論;(2)利用菱形特點和線面垂直的性質可證得,,由線面垂直的判定定理可證得結論.【詳解】(1)取中點
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 【《宅基地“三權分置”問題探析綜述》2500字】
- 【《雙匯發(fā)展的財務指標分析案例》9200字】
- 2024年安全生產事故隱患排查治理工作制度(五篇)
- 2024年四川省建筑業(yè)企業(yè)用工勞動合同格式版(三篇)
- 2024年幼兒園園務工作總結常用版(三篇)
- 2024年安全生產教育培訓管理制度模版(二篇)
- 2024年客運站衛(wèi)生管理制度(二篇)
- 2024年小學一年級數學工作計劃(二篇)
- 2024年員工考勤管理的制度企業(yè)規(guī)章制度例文(二篇)
- 青島綠化規(guī)劃方案
- 做改革創(chuàng)新生力軍
- 《老年人溝通技巧》課程標準(含課程思政)
- 屋頂光伏發(fā)電建設方案
- 小學四年級上冊數學簡便計算100題及答案
- 早期教育大學職業(yè)規(guī)劃
- 創(chuàng)建紅旗班組總結匯報
- 舞蹈美學之旅
- 驗貨員培訓教程課件
- 泌尿系統(tǒng)感染的預防與處理
- 皮疹的分級及護理課件
評論
0/150
提交評論