版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆黑龍江安達(dá)市育才高中高二數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.為調(diào)查學(xué)生的課外閱讀情況,學(xué)校從高二年級(jí)四個(gè)班的182人中隨機(jī)抽取30人了解情況,若用系統(tǒng)抽樣的方法,則抽樣的間隔和隨機(jī)剔除的個(gè)數(shù)分別為()A.6,2 B.2,3C.2,60 D.60,22.饕餮(tāotiè)紋,青銅器上常見的花紋之一,盛行于商代至西周早期,最早出現(xiàn)在距今五千年前長(zhǎng)江下游地區(qū)的良渚文化玉器上.有人將饕餮紋的一部分畫到了方格紙上,如圖所示,每個(gè)小方格的邊長(zhǎng)為,有一點(diǎn)從點(diǎn)出發(fā)每次向右或向下跳一個(gè)單位長(zhǎng)度,且向右或向下跳是等可能性的,那么它經(jīng)過次跳動(dòng)后恰好是沿著饕餮紋的路線到達(dá)點(diǎn)的概率為()A. B.C. D.3.已知雙曲線的離心率為,則的漸近線方程為A. B.C. D.4.已知橢圓是橢圓上關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn),設(shè)以為對(duì)角線的橢圓內(nèi)接平行四邊形的一組鄰邊斜率分別為,則()A.1 B.C. D.5.若復(fù)數(shù),則()A B.C. D.6.若命題為“,”,則為()A., B.,C., D.,7.如圖,在正方體中,異面直線與所成的角為()A. B.C. D.8.設(shè)為等差數(shù)列的前項(xiàng)和,若,,則公差的值為()A. B.2C.3 D.49.有6個(gè)相同的球,分別標(biāo)有數(shù)字1,2,3,4,5,6,從中有放回的隨機(jī)取兩次,每次取1個(gè)球.甲表示事件“第一次取出的球的數(shù)字是1”,乙表示事件“第二次取出的球的數(shù)字是6”,丙表示事件“兩次取出的球的數(shù)字之和是5”,丁表示事件“兩次取出的球的數(shù)字之和是偶數(shù)”,則下列判斷正確的是()A.甲與丙是互斥事件 B.乙與丙是對(duì)立事件C.甲與丁是對(duì)立事件 D.丙與丁是互斥事件10.若構(gòu)成空間的一個(gè)基底,則下列向量能構(gòu)成空間的一個(gè)基底的是()A.,, B.,,C.,, D.,,11.曲線y=x3+11在點(diǎn)P(1,12)處的切線與y軸交點(diǎn)的縱坐標(biāo)是()A.﹣9 B.﹣3C.9 D.1512.過橢圓的左焦點(diǎn)作弦,則最短弦的長(zhǎng)為()A. B.2C. D.4二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列的前n項(xiàng)和,則其通項(xiàng)公式______14.已知斜率為的直線與橢圓相交于不同的兩點(diǎn)A,B,M為y軸上一點(diǎn)且滿足|MA|=|MB|,則點(diǎn)M的縱坐標(biāo)的取值范圍是___________.15.過點(diǎn)的直線與拋物線相交于,兩點(diǎn),,則直線的方程為______.16.橢圓的左、右焦點(diǎn)分別為,,為坐標(biāo)原點(diǎn),則以下說法正確的是()A.過點(diǎn)的直線與橢圓交于,兩點(diǎn),則的周長(zhǎng)為8B.橢圓上存在點(diǎn),使得C.橢圓的離心率為D.為橢圓上一點(diǎn),為圓上一點(diǎn),則點(diǎn),的最大距離為3三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為,曲線的參數(shù)方程是(為參數(shù)(1)求直線和曲線的普通方程;(2)直線與軸交于點(diǎn),與曲線交于,兩點(diǎn),求18.(12分)如圖1,在△MBC中,,A,D分別為棱BM,MC的中點(diǎn),將△MAD沿AD折起到△PAD的位置,使,如圖2,連結(jié)PB,PC,BD(1)求證:平面PAD⊥平面ABCD;(2)若E為PC中點(diǎn),求直線DE與平面PBD所成角的正弦值19.(12分)已知銳角的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且.(1)求A;(2)若,求外接圓面積的最小值.20.(12分)已知橢圓:的長(zhǎng)軸長(zhǎng)為6,離心率為,長(zhǎng)軸的左,右頂點(diǎn)分別為A,B(1)求橢圓的方程;(2)已知過點(diǎn)的直線交橢圓于M、N兩個(gè)不同的點(diǎn),直線AM,AN分別交軸于點(diǎn)S、T,記,(為坐標(biāo)原點(diǎn)),當(dāng)直線的傾斜角為銳角時(shí),求的取值范圍21.(12分)某校高二年級(jí)共有男生490人和女生510人,現(xiàn)采用分層隨機(jī)抽樣的方法從該校高二年級(jí)中抽取100名學(xué)生,測(cè)得他們的身高數(shù)據(jù)(1)男生和女生應(yīng)各抽取多少人?(2)若樣本中男生和女生的平均身高分別為173.6、162.2厘米,請(qǐng)估計(jì)該校高二年級(jí)學(xué)生的平均身高22.(10分)如圖1是,,,,分別是邊,上兩點(diǎn),且,將沿折起使得,如圖2.(1)證明:圖2中,平面;(2)圖2中,求二面角的正切值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】根據(jù)系統(tǒng)抽樣的方法即可求解.【詳解】從人中抽取人,除以,商余,故抽樣的間隔為,需要隨機(jī)剔除人.故選:A.2、B【解析】本題首先可根據(jù)題意列出次跳動(dòng)的所有基本事件,然后找出沿著饕餮紋的路線到達(dá)點(diǎn)的事件,最后根據(jù)古典概型的概率計(jì)算公式即可得出結(jié)果.【詳解】點(diǎn)從點(diǎn)出發(fā),每次向右或向下跳一個(gè)單位長(zhǎng)度,次跳動(dòng)的所有基本事件有:(右,右,右)、(右,右,下)、(右,下,右)、(下,右,右)、(右,下,下)、(下,右,下)、(下,下,右)、(下,下,下),沿著饕餮紋的路線到達(dá)點(diǎn)的事件有:(下,下,右),故到達(dá)點(diǎn)的概率,故選:B.3、C【解析】,故,即,故漸近線方程為.【考點(diǎn)】本題考查雙曲線的基本性質(zhì),考查學(xué)生的化歸與轉(zhuǎn)化能力.4、C【解析】根據(jù)橢圓的對(duì)稱性和平行四邊形的性質(zhì)進(jìn)行求解即可.【詳解】是橢圓上關(guān)于原點(diǎn)對(duì)稱兩點(diǎn),所以不妨設(shè),即,因?yàn)槠叫兴倪呅我彩侵行膶?duì)稱圖形,所以也是橢圓上關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn),所以不妨設(shè),即,,得:,即,故選:C5、A【解析】根據(jù)復(fù)數(shù)的乘法運(yùn)算即可求解.【詳解】由,故選:A6、B【解析】特稱命題的否定是全稱命題,把存在改為任意,把結(jié)論否定.【詳解】“,”的否命題為“,”,故選:B7、C【解析】作出輔助線,找到異面直線所成的角,利用幾何性質(zhì)進(jìn)行求解.【詳解】連接與,因?yàn)?,則為所求,又是正三角形,.故選:C.8、C【解析】根據(jù)等差數(shù)列前項(xiàng)和公式進(jìn)行求解即可.【詳解】,故選:C9、D【解析】根據(jù)互斥事件和對(duì)立事件的定義判斷【詳解】當(dāng)?shù)谝淮稳〕?,第二次取出4時(shí),甲丙同時(shí)發(fā)生,不互斥不對(duì)立;第二次取出的球的數(shù)字是6與兩次取出的球的數(shù)字之和是5不可能同時(shí)發(fā)生,但可以同時(shí)不發(fā)生,不對(duì)立,當(dāng)?shù)谝淮稳〕?,第二次取出3時(shí),甲與丁同時(shí)發(fā)生,不互斥不對(duì)立,兩次取出的球的數(shù)字之和是5與兩次取出的球的數(shù)字之和是偶數(shù)不可以同時(shí)發(fā)生,但可以同時(shí)不發(fā)生,因此是互斥不對(duì)立故選:D10、B【解析】由空間向量?jī)?nèi)容知,構(gòu)成基底的三個(gè)向量不共面,對(duì)選項(xiàng)逐一分析【詳解】對(duì)于A:,因此A不滿足題意;對(duì)于B:根據(jù)題意知道,,不共面,而和顯然位于向量和向量所成平面內(nèi),與向量不共面,因此B正確;對(duì)于C:,故C不滿足題意;對(duì)于D:顯然有,選項(xiàng)D不滿足題意.故選:B11、C【解析】y′=3x2,則y′|x=1=3,所以曲線在P點(diǎn)處的切線方程為y-12=3(x-1)即y=3x+9,它在y軸上的截距為9.12、A【解析】求出橢圓的通徑,即可得到結(jié)果【詳解】過橢圓的左焦點(diǎn)作弦,則最短弦的長(zhǎng)為橢圓的通徑:故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用當(dāng)時(shí),,可求出此時(shí)的通項(xiàng)公式,驗(yàn)證n=1時(shí)是否適合,可得答案.【詳解】當(dāng)時(shí),,當(dāng)時(shí),不適合上式,∴,故答案為:.14、【解析】設(shè)直線的方程為,由消去并化簡(jiǎn)得,設(shè),,,解得..由于,所以是垂直平分線與軸的交點(diǎn),垂直平分線方程為,令得,由于,所以.也即的縱坐標(biāo)的取值范圍是.故答案為:15、##【解析】根據(jù)拋物線方程可得焦點(diǎn)坐標(biāo),進(jìn)而點(diǎn)P為拋物線的焦點(diǎn),設(shè),利用拋物線的定義可得,有軸,即可得出結(jié)果.【詳解】由題意知,拋物線的焦點(diǎn)坐標(biāo),又,所以點(diǎn)P為拋物線的焦點(diǎn),設(shè),由,由拋物線的定義得,解得,所以AB垂直與x軸,所以直線AB的方程為:.故答案為:16、ABD【解析】結(jié)合橢圓定義判斷A選項(xiàng)的正確性,結(jié)合向量數(shù)量積的坐標(biāo)運(yùn)算判斷B選項(xiàng)的正確性,直接法求得橢圓的離心率,由此判斷C選項(xiàng)的正確性,結(jié)合兩點(diǎn)間距離公式判斷D選項(xiàng)的正確性.【詳解】對(duì)于選項(xiàng):由橢圓定義可得:,因此的周長(zhǎng)為,所以選項(xiàng)正確;對(duì)于選項(xiàng):設(shè),則,且,又,,所以,,因此,解得,,故選項(xiàng)正確;對(duì)于選項(xiàng):因?yàn)椋?,所以,即,所以離心率,所以選項(xiàng)錯(cuò)誤;對(duì)于選項(xiàng):設(shè),,則點(diǎn)到圓的圓心的距離為,因?yàn)椋?,所以選項(xiàng)正確,故選:ABD三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),(2)4【解析】(1)根據(jù),即可將直線的極坐標(biāo)方程轉(zhuǎn)化為普通方程;消參數(shù),即可求出曲線的普通方程;(2)由題意易知,求出直線的參數(shù)方程,將其代入曲線的普通方程,利用一元二次方程根和系數(shù)關(guān)系式的應(yīng)用,即可求出結(jié)果【小問1詳解】解:直線極坐標(biāo)方程為,即,又,可得的普通方程為,曲線的參數(shù)方程是(為參數(shù),消參數(shù),所以曲線的普通方程為【小問2詳解】解:在中令得,,傾斜角,的參數(shù)方程可設(shè)為,即(為參數(shù)),將其代入,得,,設(shè),對(duì)應(yīng)的參數(shù)分別為,,則,,,異號(hào),.18、(1)證明見解析;(2).【解析】(1)推導(dǎo)出,,利用線面垂直的判定定理可得平面,再利用面面垂直的判定定理即可證明;(2)以A為坐標(biāo)原點(diǎn),建立如圖空間直角坐標(biāo)系,利用向量法即可求出直線DE與平面所成角的正弦值.【小問1詳解】由題意知,因?yàn)辄c(diǎn)A、D分別為MB、MC中點(diǎn),所以,又,所以,所以.因?yàn)椋?,又,所以平面,又平面,所以平面平面;【小?詳解】因?yàn)?,,,所以兩兩垂直,以A為坐標(biāo)原點(diǎn),建立如圖空間直角坐標(biāo)系,,則,設(shè)平面的一個(gè)法向量為,則,令,得,所以,設(shè)直線DE與平面所成角為,則,所以直線DE與平面所成角的正弦值為.19、(1)(2)【解析】(1)利用二倍角公式將已知轉(zhuǎn)化為正弦函數(shù),解一元二次方程可得;(2)由余弦定理和(1)可求a的最小值,再由正弦定理可得外接圓半徑的最小值,然后可解.【小問1詳解】因?yàn)?,所以,解得或(舍去),又為銳角三角形,所以.【小問2詳解】因?yàn)椋?dāng)且僅當(dāng)時(shí),等號(hào)成立,所以.外接圓的半徑,故外接圓面積的最小值為.20、(1)(2)【解析】(1)根據(jù)橢圓的長(zhǎng)軸和離心率,可求得,進(jìn)而得橢圓方程;(2)先判斷直線斜率為正,然后設(shè)出直線方程,和橢圓方程聯(lián)立,整理得根與系數(shù)的關(guān)系,利用直線方程求出點(diǎn)S、T的坐標(biāo),再根據(jù)確定的表達(dá)式,將根與系數(shù)的關(guān)系式代入化簡(jiǎn),求得結(jié)果.【小問1詳解】由題意可得:解得:,所以橢圓的方程:【小問2詳解】當(dāng)直線l的傾斜角為銳角時(shí),設(shè),設(shè)直線,由得,從而,又,得,所以,又直線的方程是:,令,解得,所以點(diǎn)S為;直線的方程是:,同理點(diǎn)T為·所以,因?yàn)?,所以,所以∵,∴,綜上,所以的范圍是21、(1)應(yīng)抽取男生49人,女生51人;(2).【解析】(1)利用分層抽樣計(jì)算男生和女生應(yīng)抽取的人數(shù);(2)利用平均數(shù)的計(jì)算公式計(jì)算求解.【小問1詳解】解:應(yīng)抽取男生人,女生應(yīng)抽取100-49=51人.【小問2詳解】解:估計(jì)該校
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度公共場(chǎng)所窗簾清洗與保養(yǎng)服務(wù)合同3篇
- 2025年度離婚后子女撫養(yǎng)權(quán)協(xié)商服務(wù)合同3篇
- 2025年度稅收籌劃與稅務(wù)籌劃合規(guī)性審查合同2篇
- 2025年度恐怖劇本定制與特效設(shè)計(jì)合同3篇
- 2024版輕鋼房屋建造協(xié)議模板協(xié)議
- 二零二四商鋪?zhàn)赓U合作協(xié)議:教育培訓(xùn)機(jī)構(gòu)商鋪?zhàn)赓U合同3篇
- 2025年度餐飲品牌連鎖拓展合同范本3篇
- 二零二四年家居裝飾團(tuán)購合同3篇
- 2025年度材料墊資供應(yīng)鏈金融服務(wù)合同3篇
- 2024年鐵礦石采購中介服務(wù)合同樣本
- 使用錯(cuò)誤評(píng)估報(bào)告(可用性工程)模版
- 公司章程(二個(gè)股東模板)
- GB/T 19889.7-2005聲學(xué)建筑和建筑構(gòu)件隔聲測(cè)量第7部分:樓板撞擊聲隔聲的現(xiàn)場(chǎng)測(cè)量
- 世界奧林匹克數(shù)學(xué)競(jìng)賽6年級(jí)試題
- 藥用植物學(xué)-課件
- 文化差異與跨文化交際課件(完整版)
- 國(guó)貨彩瞳美妝化消費(fèi)趨勢(shì)洞察報(bào)告
- 云南省就業(yè)創(chuàng)業(yè)失業(yè)登記申請(qǐng)表
- UL_標(biāo)準(zhǔn)(1026)家用電器中文版本
- 國(guó)網(wǎng)三個(gè)項(xiàng)目部標(biāo)準(zhǔn)化手冊(cè)(課堂PPT)
- 快速了解陌生行業(yè)的方法論及示例PPT課件
評(píng)論
0/150
提交評(píng)論