山東省膠州市第一中學(xué)2025屆數(shù)學(xué)高二上期末學(xué)業(yè)水平測試試題含解析_第1頁
山東省膠州市第一中學(xué)2025屆數(shù)學(xué)高二上期末學(xué)業(yè)水平測試試題含解析_第2頁
山東省膠州市第一中學(xué)2025屆數(shù)學(xué)高二上期末學(xué)業(yè)水平測試試題含解析_第3頁
山東省膠州市第一中學(xué)2025屆數(shù)學(xué)高二上期末學(xué)業(yè)水平測試試題含解析_第4頁
山東省膠州市第一中學(xué)2025屆數(shù)學(xué)高二上期末學(xué)業(yè)水平測試試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

山東省膠州市第一中學(xué)2025屆數(shù)學(xué)高二上期末學(xué)業(yè)水平測試試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在平行六面體中,點P在上,若,則()A. B.C. D.2.已知拋物線上的點到其準(zhǔn)線的距離為,則()A. B.C. D.3.在正方體中,,則()A. B.C. D.4.定義在R上的函數(shù)與函數(shù)在上具有相同的單調(diào)性,則k的取值范圍是()A. B.C. D.5.已知函數(shù),若,則()A. B.0C.1 D.26.甲、乙兩名射擊運動員進(jìn)行比賽,甲的中靶概率為0.8,乙的中靶概率為0.9,則兩人各射擊一次恰有一人中靶的概率為()A.0.26 B.0.28C.0.72 D.0.987.設(shè)雙曲線的左、右頂點分別為、,點在雙曲線上第一象限內(nèi)的點,若的三個內(nèi)角分別為、、且,則雙曲線的漸近線方程為()A. B.C. D.8.已知數(shù)列通項公式,則()A.6 B.13C.21 D.319.《九章算術(shù)》與《幾何原本》并稱現(xiàn)代數(shù)學(xué)的兩大源泉.在《九章算術(shù)》卷五商功篇中介紹了羨除(此處是指三面為等腰梯形,其他兩側(cè)面為直角三角形的五面體)體積的求法.在如圖所示的羨除中,平面是鉛垂面,下寬,上寬,深,平面BDEC是水平面,末端寬,無深,長(直線到的距離),則該羨除的體積為()A. B.C. D.10.已知雙曲線的左右焦點分別為、,過點的直線交雙曲線右支于A、B兩點,若是等腰三角形,且,則的周長為()A. B.C. D.11.拋物線的準(zhǔn)線方程是,則實數(shù)的值為()A. B.C.8 D.12.關(guān)于的不等式的解集為()A. B.C.或 D.二、填空題:本題共4小題,每小題5分,共20分。13.已知圓,若圓的過點的三條弦的長,,構(gòu)成等差數(shù)列,則該數(shù)列的公差的最大值是______.14.在2021件產(chǎn)品中有10件次品,任意抽取3件,則抽到次品個數(shù)的數(shù)學(xué)期望的值是______.15.橢圓上一點到兩個焦點的距離之和等于,則的標(biāo)準(zhǔn)方程為______.16.若關(guān)于的不等式恒成立,則實數(shù)的取值范圍是______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某城市戶居民的月平均用電量(單位:度),以,,,,,,分組的頻率分布直方圖如圖(1)求直方圖中的值;(2)求月平均用電量的眾數(shù)和中位數(shù);(3)在月平均用電量為,,,的四組用戶中,用分層抽樣的方法抽取戶居民,則月平均用電量在的用戶中應(yīng)抽取多少戶?18.(12分)已知拋物線上的點到焦點的距離為6(1)求拋物線的方程;(2)設(shè)為拋物線的焦點,直線與拋物線交于,兩點,求的面積19.(12分)某港口船舶??康姆桨甘窍鹊较韧#颐看沃荒芡?恳凰掖?(1)若甲乙兩艘船同時到達(dá)港口,雙方約定各派一名代表猜拳:從1,2,3,4,5中各隨機(jī)選一個數(shù),若兩數(shù)之和為奇數(shù),則甲先???;若兩數(shù)之和為偶數(shù),則乙先???,這種方式對雙方是否公平?請說明理由;(2)若甲、乙兩船在一晝夜內(nèi)到達(dá)該碼頭的時刻是等可能的.如果甲船停泊時間為1h,乙船停泊時間為2h,求它們中的任意一艘都不需要等待碼頭空出的概率.20.(12分)已知公差不為零的等差數(shù)列的前項和為,,且,,成等比數(shù)列(1)求的通項公式;(2)記,求數(shù)列的前項和21.(12分)已知內(nèi)角A,B,C的對邊分別為a,b,c,且B,A,C成等差數(shù)列.(1)求A的大??;(2)若,且的面積為,求的周長.22.(10分)如圖,在三棱錐中,,點為線段上的點.(1)若平面,試確定點的位置,并說明理由;(2)若,,,在(1)成立的前提下,求二面角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】利用空間向量基本定理,結(jié)合空間向量加法的法則進(jìn)行求解即可.【詳解】因為,,所以有,因此,故選:C2、C【解析】首先根據(jù)拋物線的標(biāo)準(zhǔn)方程的形式,確定的值,再根據(jù)焦半徑公式求解.【詳解】,,因為點到的準(zhǔn)線的距離為,所以,得故選:C3、A【解析】根據(jù)空間向量基本定理,結(jié)合空間向量加法的幾何意義進(jìn)行求解即可.【詳解】因為,而,所以有,故選:A4、B【解析】判定函數(shù)單調(diào)性,再利用導(dǎo)數(shù)結(jié)合函數(shù)在的單調(diào)性列式計算作答.【詳解】由函數(shù)得:,當(dāng)且僅當(dāng)時取“=”,則在R上單調(diào)遞減,于是得函數(shù)在上單調(diào)遞減,即,,即,而在上單調(diào)遞減,當(dāng)時,,則,所以k的取值范圍是.故選:B5、D【解析】求出函數(shù)的導(dǎo)數(shù),直接代入即可求值.【詳解】因為,所以,所以,所以.故選:D.6、A【解析】依據(jù)獨立事件同時發(fā)生的概率即可求得甲乙兩人各射擊一次恰有一人中靶的概率.【詳解】記甲中靶為事件A,乙中靶為事件B,則甲乙兩人各射擊一次恰有一人中靶,包含甲中乙不中和甲不中乙中兩種情況,則甲乙兩人各射擊一次恰有一人中靶的概率為故選:A7、B【解析】設(shè)點,其中,,求得,且有,,利用兩角和的正切公式可求得的值,進(jìn)而可求得的值,即可得出該雙曲線的漸近線的方程.【詳解】易知點、,設(shè)點,其中,,且,,且,,,所以,,,因為,所以,,則,因此,該雙曲線漸近線方程為.故選:B.8、C【解析】令即得解.【詳解】解:令得.故選:C9、C【解析】在,上分別取點,,使得,連接,,,把幾何體分割成一個三棱柱和一個四棱錐,然后由棱柱、棱錐體積公式計算【詳解】如圖,在,上分別取點,,使得,連接,,,則三棱柱是斜三棱柱,該羨除的體積三棱柱四棱錐.故選:C【點睛】思路點睛:本題考查求空間幾何體的體積,解題思路是觀察幾何體的結(jié)構(gòu)特征,合理分割,將不規(guī)則幾何體體積的計算轉(zhuǎn)化為錐體、柱體體積的計算.考查了空間想象能力、邏輯思維能力、運算求解能力10、A【解析】設(shè),.根據(jù)雙曲線的定義和等腰三角形可得,再利用余弦定理可求得,從而可得的周長.【詳解】由雙曲線可得設(shè),.則,,所以,因為是等腰三角形,且,所以,即,所以,所以,,在中,由余弦定理得,即,所以,解得,的周長故選:A【點睛】關(guān)鍵點點睛:根據(jù)雙曲線的定義求解是解題關(guān)鍵.11、B【解析】化簡方程為,求得拋物線的準(zhǔn)線方程,列出方程,即可求解.【詳解】由拋物線,可得,所以,所以拋物線的準(zhǔn)線方程為,因為拋物線的準(zhǔn)線方程為,所以,解得.故選:B.12、C【解析】求出不等式對應(yīng)方程的根,結(jié)合不等式和二次函數(shù)的關(guān)系,即可得到結(jié)果.【詳解】不等式對應(yīng)方程的兩根為,因為,故可得,根據(jù)二次不等式以及二次函數(shù)的關(guān)系可得不等式的解集為或.故選:C.【點睛】本題考查含參二次不等式的求解,屬基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】根據(jù)題意,求得過點的直線截圓所得弦長的最大值和最小值,即可求得公差的最大值.【詳解】圓的圓心,半徑,設(shè)點為點,因為,故點在圓內(nèi),當(dāng)直線過點,且經(jīng)過圓心時,該直線截圓所得弦長取得最大值;當(dāng)直線過點,且與直線垂直時,該直線截圓所得弦長取得最小值,此時,則滿足題意的直線為,即,又,則該直線截圓所得弦長為;根據(jù)題意,要使得數(shù)列的公差最大,則,故最大公差.故答案為:.14、【解析】設(shè)抽到的次品的個數(shù)為,則,求出對應(yīng)的概率即得解.【詳解】解:設(shè)抽到的次品的個數(shù)為,則,所以所以抽到次品個數(shù)的數(shù)學(xué)期望的值是故答案為:15、【解析】根據(jù)橢圓定義求出其長半軸長,再結(jié)合焦點坐標(biāo)即可計算作答.【詳解】因橢圓上一點到兩個焦點的距離之和等于,則該橢圓長半軸長,而半焦距,于是得短半軸長b,有,所以的標(biāo)準(zhǔn)方程為.故答案為:16、【解析】設(shè)由題可知,當(dāng)時,可得適合題意,當(dāng)時,可求函數(shù)的最小值即得,當(dāng)時不合題意,即得.【詳解】設(shè),由題可知,∴,當(dāng)時,,適合題意,所以,當(dāng)時,令,則,此時時,,單調(diào)遞減,,,單調(diào)遞增,∴,又,∴,∴,即,解得,當(dāng)時,時,,,故的值有正有負(fù),不合題意;綜上,實數(shù)的取值范圍是.故答案為:.【點睛】關(guān)鍵點點睛:本題考查不等式恒成立求參數(shù)的取值范圍,設(shè)由題可知,當(dāng)時,利用導(dǎo)數(shù)可求函數(shù)的最小值,結(jié)合,可得,進(jìn)而通過解,即得.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2),;(3)【解析】(1)由直方圖的性質(zhì)可得(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)×20=1,解方程可得;(2)由直方圖中眾數(shù)為最高矩形上端的中點可得,可得中位數(shù)在[220,240)內(nèi),設(shè)中位數(shù)為a,解方程(0.002+0.0095+0.011)×20+0.0125×(a-220)=0.5可得;(3)可得各段的用戶分別為25,15,10,5,可得抽取比例,可得要抽取的戶數(shù)試題解析:(1)由直方圖的性質(zhì)可得(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)×20=1得:x=0.0075,所以直方圖中x的值是0.0075.-------------3分(2)月平均用電量的眾數(shù)是=230.-------------5分因為(0.002+0.0095+0.011)×20=0.45<0.5,所以月平均用電量的中位數(shù)在[220,240)內(nèi),設(shè)中位數(shù)為a,由(0.002+0.0095+0.011)×20+0.0125×(a-220)=0.5得:a=224,所以月平均用電量的中位數(shù)是224.------------8分(3)月平均用電量為[220,240)的用戶有0.0125×20×100=25戶,月平均用電量為[240,260)的用戶有0.0075×20×100=15戶,月平均用電量為[260,280)的用戶有0.005×20×100=10戶,月平均用電量為[280,300]的用戶有0.0025×20×100=5戶,-------------10分抽取比例==,所以月平均用電量在[220,240)的用戶中應(yīng)抽取25×=5戶.--12分考點:頻率分布直方圖及分層抽樣18、(1)(2)【解析】(1)根據(jù)焦半徑公式可求,從而可求拋物線的方程.(2)求出的長度后可求的面積.【小問1詳解】因為,所以,故拋物線方程為:.【小問2詳解】設(shè),且,由可得,故或,故,故,故,而到直線的距離為,故的面積為19、(1)不公平,理由見解析.(2)【解析】(1)通過計算概率來進(jìn)行判斷.(2)利用幾何概型計算出所求概率.【小問1詳解】兩數(shù)之和為奇數(shù)的概率為,兩數(shù)之和為偶數(shù)的概率為,兩個概率不相等,所以不公平.【小問2詳解】設(shè)甲到的時刻為,乙到的時刻為,則,若它們中的任意一艘都不需要等待碼頭空出,則或,畫出可行域如下圖陰影部分所示,所以所求的概率為:.20、(1)(2)【解析】(1)設(shè)數(shù)列的公差為,由,且,,,利用“”法求解;(2)由,利用裂項相消法求解.【小問1詳解】解:,,設(shè)數(shù)列的公差為,則,,,由題知,整理得,解得,(舍去),,則.【小問2詳解】,則=.21、(1)(2)【解析】(1)由等差數(shù)列的性質(zhì)結(jié)合內(nèi)角和定理得出A的大??;(2)先由余弦定理,結(jié)合,,得到的關(guān)系式,再由的面積為,得到的關(guān)系式,兩式聯(lián)立可求出,進(jìn)而可確定結(jié)果.【小問1詳解】因為B,A,C成等差數(shù)列,所以,所以.【小問2詳解】因為,,由余弦定理可得:;又的面積為,所以,所以,所以,所以周長為.22、(1)點為MC的中點,理由見解析;(2)【解析

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論