山西省新絳縣2025屆數(shù)學高二上期末教學質(zhì)量檢測試題含解析_第1頁
山西省新絳縣2025屆數(shù)學高二上期末教學質(zhì)量檢測試題含解析_第2頁
山西省新絳縣2025屆數(shù)學高二上期末教學質(zhì)量檢測試題含解析_第3頁
山西省新絳縣2025屆數(shù)學高二上期末教學質(zhì)量檢測試題含解析_第4頁
山西省新絳縣2025屆數(shù)學高二上期末教學質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

山西省新絳縣2025屆數(shù)學高二上期末教學質(zhì)量檢測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知直線,當變化時,所有直線都恒過點()A.B.C.D.2.在正方體中,分別是線段的中點,則點到直線的距離是()A. B.C. D.3.拋物線的準線方程為()A B.C. D.4.已知圓,圓,則兩圓的公切線的條數(shù)為()A.1 B.2C.3 D.45.設是等比數(shù)列,則“對于任意的正整數(shù)n,都有”是“是嚴格遞增數(shù)列”()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.已知平面內(nèi)有一點,平面的一個法向量為,則下列四個點中在平面內(nèi)的是()A. B.C. D.7.過點與直線平行的直線的方程是()A. B.C. D.8.甲乙兩名運動員在某項體能測試中的6次成績統(tǒng)計如表:甲9816151514乙7813151722分別表示甲乙兩名運動員這項測試成績的平均數(shù),分別表示甲乙兩名運動員這項測試成績的標準差,則有()A., B.,C., D.,9.已知數(shù)列的前項和,且,則()A. B.C. D.10.已知拋物線的焦點恰為雙曲線的一個頂點,的另一頂點為,與在第一象限內(nèi)的交點為,若,則直線的斜率為()A. B.C. D.11.已知直線平分圓C:,則最小值為()A.3 B.C. D.12.19世紀法國著名數(shù)學家加斯帕爾·蒙日,創(chuàng)立了畫法幾何學,推動了空間幾何學的獨立發(fā)展,提出了著名的蒙日圓定理:橢圓的兩條切線互相垂直,則切線的交點位于一個與橢圓同心的圓上,稱為蒙日圓,且該圓的半徑等于橢圓長半軸長與短半軸長的平方和的算術(shù)平方根.若圓與橢圓的蒙日圓有且僅有一個公共點,則b的值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列滿足,記,則______;數(shù)列的通項公式為______.14.給定點、、與點,求點到平面的距離______.15.點到直線的距離為______.16.函數(shù),若,則的值等于_______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線的頂點在原點,焦點在軸上,且拋物線上有一點到焦點的距離為6.(1)求拋物線的方程;(2)若不過原點的直線與拋物線交于A、B兩點,且,求證:直線過定點并求出定點坐標.18.(12分)已知函數(shù).(1)求函數(shù)的極值;(2)若對恒成立,求實數(shù)a的取值范圍.19.(12分)已知:對任意,都有;:存在,使得(1)若“且”為真,求實數(shù)的取值范圍;(2)若“或”為真,“且”為假,求實數(shù)的取值范圍20.(12分)已知圓M經(jīng)過點F(2,0),且與直線x=-2相切.(1)求圓心M的軌跡C的方程;(2)過點(-1,0)的直線l與曲線C交于A,B兩點,若,求直線l的斜率k的取值范圍.21.(12分)各項都為正數(shù)的數(shù)列的前項和為,且滿足.(1)求數(shù)列的通項公式;(2)求;(3)設,數(shù)列的前項和為,求使成立的的最小值.22.(10分)平面直角坐標系xOy中,點,,點M滿足.記M的軌跡為C.(1)說明C是什么曲線,并求C的方程;(2)已知經(jīng)過的直線l與C交于A,B兩點,若,求.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】將直線方程整理為,從而可得直線所過的定點.【詳解】可化為,∴直線過定點,故選:D.2、A【解析】以為坐標原點,分別以的方向為軸的正方向,建立空間直角坐標系,然后,列出計算公式進行求解即可【詳解】如圖,以為坐標原點,分別以的方向為軸的正方向,建立空間直角坐標系.因為,所以,所以,則點到直線的距離故選:A3、D【解析】根據(jù)拋物線方程求出,進而可得焦點坐標以及準線方程.【詳解】由可得,所以焦點坐標為,準線方程為:,故選:D.4、B【解析】根據(jù)圓的方程,求得圓心距和兩圓的半徑之和,之差,判斷兩圓的位置關(guān)系求解.【詳解】因為圓,圓,所以,,所以,所以兩圓相交,所以兩圓的公切線的條數(shù)為2,故選:B5、C【解析】根據(jù)嚴格遞增數(shù)列定義可判斷必要性,分類討論可判斷充分性.【詳解】若是嚴格遞增數(shù)列,顯然,所以“對于任意的正整數(shù)n,都有”是“是嚴格遞增數(shù)列”必要條件;對任意的正整數(shù)n都成立,所以中不可能同時含正項和負項,,即,或,即,當時,有,即,是嚴格遞增數(shù)列,當時,有,即,是嚴格遞增數(shù)列,所以“對于任意的正整數(shù)n,都有”是“是嚴格遞增數(shù)列”充分條件故選:C6、A【解析】設所求點的坐標為,由,逐一驗證選項即可【詳解】設所求點的坐標為,則,因為平面的一個法向量為,所以,,對于選項A,,對于選項B,,對于選項C,,對于選項D,故選:A7、A【解析】根據(jù)題意利用點斜式寫出直線方程即可.【詳解】解:過點的直線與直線平行,,即.故選:A.8、B【解析】根據(jù)給定統(tǒng)計表計算、,再比較、大小判斷作答.【詳解】依題意,,,,,所以,.故選:B9、C【解析】由an=Sn-Sn-1,【詳解】解:因為,所以,,兩式相減可得,即,因為,,所以,即,時,也滿足上式,所以,所以,故選:C.10、D【解析】根據(jù)題意,列出的方程組,解得,再利用斜率公式即可求得結(jié)果.【詳解】因為拋物線的焦點,由題可知;又點在拋物線上,故可得;又,聯(lián)立方程組可得,整理得,解得(舍)或,此時,又,故直線的斜率為.故選:D.11、D【解析】根據(jù)直線過圓心求得,再利用基本不等式求和的最小值即可.【詳解】根據(jù)題意,直線過點,即,則,當且僅當,即時取得最小值.故選:D.12、B【解析】由題意求出蒙日圓方程,再由兩圓只有一個交點可知兩圓相切,從而列方程可求出b的值【詳解】由題意可得橢圓的蒙日圓的半徑,所以蒙日圓方程為,因為圓與橢圓的蒙日圓有且僅有一個公共點,所以兩圓相切,所以,解得,故選:B二、填空題:本題共4小題,每小題5分,共20分。13、①.②..【解析】結(jié)合遞推公式計算出,即可求出的值;證得數(shù)列是以3為首項,2為公比的等比數(shù)列,即可求出結(jié)果.【詳解】因為,所以,,,因此,由于,又,即,所以,因此數(shù)列是以3為首項,2為公比的等比數(shù)列,則,即,故答案為:;.14、【解析】先求出平面的法向量,再利用點到面的距離公式計算即可.【詳解】設平面的法向量為,點到平面的距離為,,,即,令,得故答案為:.15、【解析】直接利用點到直線的距離公式計算即可.【詳解】點到直線的距離為.故答案為:.16、【解析】對函數(shù)進行求導,把代入導函數(shù)中,化簡即可求出的值.【詳解】函數(shù).故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析,定點坐標為(8,0).【解析】(1)根據(jù)拋物線的定義,即可求出結(jié)果;(2)由題意直線方程可設為,將其與拋物線方程聯(lián)立,再將轉(zhuǎn)化為,根據(jù)韋達定理,化簡求解,即可求出定點.【小問1詳解】解:拋物線的頂點在原點,焦點在軸上,且拋物線上有一點,設拋物線的方程為,到焦點的距離為6,即有點到準線的距離為6,即解得,即拋物線的標準方程為;【小問2詳解】證明:由題意知直線不能與軸平行,故直線方程可設為,與拋物線聯(lián)立得,消去得,設,則,則,,由,可得,所以,即,亦即,又,解得,所以直線方程為,易得直線過定點.18、(1)極大值為,無極小值(2)【解析】(1)求函數(shù)的導數(shù),根據(jù)導數(shù)的正負判斷極值點,代入原函數(shù)計算即可;(2)將變形,即對恒成立,然后構(gòu)造函數(shù),利用求導判定函數(shù)的單調(diào)性,進而確定實數(shù)a的取值范圍..【小問1詳解】對函數(shù)求導可得:,可知當時,時,,即可知在上單調(diào)遞增,在上單調(diào)遞減由上可知,的極大值為,無極小值【小問2詳解】由對恒成立,當時,恒成立;當時,對恒成立,可變形為:對恒成立,令,則;求導可得:由(1)知即恒成立,當時,,則在上單調(diào)遞增;又,因,故,,所以在上恒成立,當時,令,得,當時,在上單調(diào)遞增,當時,在上單調(diào)遞減,從而可知的最大值為,即,因此,對都有恒成立,所以,實數(shù)a的取值范圍是.19、(1).(2).【解析】(1)由已知得,均為真命題,分別求得為真命題,為真命題時,實數(shù)的取值范圍,再由集合的交集運算求得答案;(2)由已知得,一真一假,建立不等式組,求解即可.【小問1詳解】解:因為“且”為真命題,所以,均為真命題若為真命題,則,解得;若為真命題,則,當且僅當,即時,等號成立,此時故實數(shù)的取值范圍是;【小問2詳解】解:若“或”為真,“且”為假,則,一真一假當真,假時,則得;當假,真時,則得故實數(shù)的取值范圍為20、(1);(2).【解析】(1)設圓心,軌跡兩點的距離公式列出方程,整理方程即可;(2)設直線l的方程和點A、B的坐標,直線方程聯(lián)立拋物線方程,消去x得出關(guān)于y的一元二次方程,結(jié)合根的判別式和韋達定理表示出弦,進而列出不等式,解之即可.【小問1詳解】設圓心,由題意知,,整理,得,即圓心M的軌跡C方程為:;【小問2詳解】由題意知,過點(-1,0)的直線l與拋物線C相交于點A、B,所以直線l的斜率存在且不為0,設直線,點,則,消去x,得,或,,同理可得,所以,即,由,得,解得,綜上,或,所以或,即直線l的斜率的取值范圍為.21、(1)(2)(3)【解析】(1)直接利用數(shù)列的遞推關(guān)系式,結(jié)合等差數(shù)列的定義,即可求得數(shù)列的通項公式;(2)化簡,結(jié)合裂項相消法求出數(shù)列的和;(3)利用分組法求得,結(jié)合,即可求得的最小值.【小問1詳解】解:因為各項都為正數(shù)的數(shù)列的前項和為,且滿足,當時,解得;當時,;兩式相減可得,整理得(常數(shù)),故數(shù)列是以2為首項,2為公差的等差數(shù)列;所以.【小問2詳解】解:由,可得,所以,所以.【小問3詳解】解:由,可得,所以當為偶數(shù)時,,因為,且為偶數(shù),所以的最小值為48;當為奇數(shù)時,,不存在最小的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論