甘肅省蘭州市第五中學(xué)2025屆高二上數(shù)學(xué)期末達(dá)標(biāo)檢測(cè)模擬試題含解析_第1頁(yè)
甘肅省蘭州市第五中學(xué)2025屆高二上數(shù)學(xué)期末達(dá)標(biāo)檢測(cè)模擬試題含解析_第2頁(yè)
甘肅省蘭州市第五中學(xué)2025屆高二上數(shù)學(xué)期末達(dá)標(biāo)檢測(cè)模擬試題含解析_第3頁(yè)
甘肅省蘭州市第五中學(xué)2025屆高二上數(shù)學(xué)期末達(dá)標(biāo)檢測(cè)模擬試題含解析_第4頁(yè)
甘肅省蘭州市第五中學(xué)2025屆高二上數(shù)學(xué)期末達(dá)標(biāo)檢測(cè)模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

甘肅省蘭州市第五中學(xué)2025屆高二上數(shù)學(xué)期末達(dá)標(biāo)檢測(cè)模擬試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè),,,則,,大小關(guān)系為A. B.C. D.2.設(shè)、分別是橢圓()的左、右焦點(diǎn),過的直線l與橢圓E相交于A、B兩點(diǎn),且,則的長(zhǎng)為()A. B.1C. D.3.邊長(zhǎng)為的正方形沿對(duì)角線折成直二面角,、分別為、的中點(diǎn),是正方形的中心,則的大小為()A. B.C. D.4.由下面的條件一定能得出為銳角三角形的是()A. B.C. D.5.已知拋物線的焦點(diǎn)為,點(diǎn)為拋物線上一點(diǎn),點(diǎn),則的最小值為()A. B.2C. D.36.拋物線的焦點(diǎn)為F,A,B是拋物線上兩點(diǎn),若,若AB的中點(diǎn)到準(zhǔn)線的距離為3,則AF的中點(diǎn)到準(zhǔn)線的距離為()A.1 B.2C.3 D.47.曲線為四葉玫瑰線,這種曲線在苜蓿葉型立交橋的布局中有非常廣泛的應(yīng)用,苜蓿葉型立交橋有兩層,將所有原來(lái)需要穿越相交道路的轉(zhuǎn)向都由環(huán)形匝道來(lái)實(shí)現(xiàn),即讓左轉(zhuǎn)車輛行駛環(huán)道后自右側(cè)切向匯入高速公路,四條環(huán)形匝道就形成了苜蓿葉的形狀.下列結(jié)論正確的個(gè)數(shù)是()①曲線C關(guān)于點(diǎn)(0,0)對(duì)稱;②曲線C關(guān)于直線y=x對(duì)稱;③曲線C的面積超過4π.A.0 B.1C.2 D.38.已知全集,集合,,則()A. B.C. D.9.已知圓,圓,M,N分別是圓上的動(dòng)點(diǎn),P為x軸上的動(dòng)點(diǎn),則以的最小值為()A B.C. D.10.新型冠狀病毒(2019-NCoV)因2019年武漢病毒性肺炎病例而被發(fā)現(xiàn),2020年1月12日被世界衛(wèi)生組織命名,為考察某種藥物預(yù)防該疾病的效果,進(jìn)行動(dòng)物試驗(yàn),得到如下列聯(lián)表:患病未患病總計(jì)服用藥104555未服藥203050總計(jì)3075105下列說法正確的是()參考數(shù)據(jù):,0.050.013.8416.635A.有95%的把握認(rèn)為藥物有效B.有95%的把握認(rèn)為藥物無(wú)效C.在犯錯(cuò)誤的概率不超過0.05的前提下認(rèn)為藥物無(wú)效D.在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為藥物有效11.在等差數(shù)列中,,,則的取值范圍是()A. B.C. D.12.金剛石的成分為純碳,是自然界中存在的最堅(jiān)硬物質(zhì),它的結(jié)構(gòu)是由8個(gè)等邊三角形組成的正八面體.若某金剛石的棱長(zhǎng)為2,則它外接球的體積為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線C:的一個(gè)焦點(diǎn)坐標(biāo)為,則其漸近線方程為__________14.有一組數(shù)據(jù):,其平均數(shù)是,則其方差是________.15.射擊隊(duì)某選手命中環(huán)數(shù)的概率如下表所示:命中環(huán)數(shù)10987概率0.320.280.180.120.1該選手射擊兩次,兩次命中環(huán)數(shù)相互獨(dú)立,則他至少命中一次9環(huán)或10環(huán)的概率為_________________.(結(jié)果用小數(shù)表示)16.已知一組樣本數(shù)據(jù)5、6、a、6、8的極差為5,若,則其方差為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(1)若,求函數(shù)的單調(diào)區(qū)間;(2)若函數(shù)有兩個(gè)不相等的零點(diǎn),證明:18.(12分)在等差數(shù)列中,,.(1)求數(shù)列通項(xiàng)公式;(2)若,求數(shù)列的前項(xiàng)和.19.(12分)已知直線與直線交于點(diǎn).(1)求過點(diǎn)且平行于直線的直線的方程,并求出兩平行直線間的距離;(2)求過點(diǎn)并且在兩坐標(biāo)軸上的截距互為相反數(shù)的直線的方程.20.(12分)如圖,在長(zhǎng)方體中,,若點(diǎn)P為棱上一點(diǎn),且,Q,R分別為棱上的點(diǎn),且.(1)求直線與平面所成角的正弦值;(2)求平面與平面的夾角的余弦值.21.(12分)如圖,在三棱柱中,=2,且,⊥底面ABC.E為AB中點(diǎn)(1)求證:平面;(2)求平面與平面CEB夾角的余弦值22.(10分)已知數(shù)列中,,.(1)求證:數(shù)列是等差數(shù)列,并求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】由,可得,,故選C.考點(diǎn):指數(shù)函數(shù)性質(zhì)2、C【解析】由橢圓的定義得:,,結(jié)合條件可得,即可得答案.【詳解】由橢圓的定義得:,,又,,所以,由橢圓知,所以.故選:C3、B【解析】建立空間直角坐標(biāo)系,以向量法去求的大小即可解決.【詳解】由題意可得平面,,則兩兩垂直以O(shè)為原點(diǎn),分別以O(shè)B、OA、OC所在直線為x、y、z軸建立空間直角坐標(biāo)系則,,,,又,則故選:B4、D【解析】對(duì)于A,兩邊平方得,由得,即為鈍角;對(duì)于B,由正弦定理求出,進(jìn)而求出,可得結(jié)果;對(duì)于C,根據(jù)平方關(guān)系將余弦化為正弦,用正弦定理可將角轉(zhuǎn)化為邊,進(jìn)而可得的值,從而作出判斷;對(duì)于D,由可得,推出,,,故可知三個(gè)內(nèi)角均為銳角【詳解】解:對(duì)于A,由,兩邊平方整理得,,因?yàn)?,所以,所以,所以,所以為鈍角三角形,故A不正確;對(duì)于B,由,得,所以,因?yàn)?,所以,所以或,所以或,所以為直角三角形或鈍角三角形,故B不正確;對(duì)于C,因?yàn)?,所以,即,由正弦定理得,由余弦定理得,因?yàn)?,所以,故三角形為鈍角三角形,C不正確;對(duì)于D,由可得,因?yàn)橹凶疃嘀挥幸粋€(gè)鈍角,所以,,中最多只有一個(gè)為負(fù)數(shù),所以,,,所以中三個(gè)內(nèi)角都為銳角,所以為銳角三角形,故D正確;故選:D5、D【解析】求出拋物線C的準(zhǔn)線l的方程,過A作l的垂線段,結(jié)合幾何意義及拋物線定義即可得解.【詳解】拋物線的準(zhǔn)線l:,顯然點(diǎn)A在拋物線C內(nèi),過A作AM⊥l于M,交拋物線C于P,如圖,在拋物線C上任取不同于點(diǎn)P的點(diǎn),過作于點(diǎn)N,連PF,AN,,由拋物線定義知,,于是得,即點(diǎn)P是過A作準(zhǔn)線l的垂線與拋物線C的交點(diǎn)時(shí),取最小值,所以的最小值為3.故選:D6、C【解析】結(jié)合拋物線的定義求得,由此求得線段的中點(diǎn)到準(zhǔn)線的距離【詳解】拋物線方程為,則,由于中點(diǎn)到準(zhǔn)線的距離為3,結(jié)合拋物線的定義可知,即,所以線段的中點(diǎn)到準(zhǔn)線的距離為.故選:C7、C【解析】根據(jù)圖像或解析式即可判斷對(duì)稱性①②;估算第一象限內(nèi)圖像面積即可判斷③.【詳解】①將點(diǎn)(-x,-y)代入后依然為,故曲線C關(guān)于原點(diǎn)對(duì)稱;②將點(diǎn)(y,x)代入后依然為,故曲線C關(guān)于y=x對(duì)稱;③曲線C在四個(gè)象限的圖像是完全相同的,不妨只研究第一象限的部分,∵,∴曲線C上離原點(diǎn)最遠(yuǎn)的點(diǎn)的距離為顯然第一象限內(nèi)曲線C的面積小于以為直徑的圓的面積,又∵,∴第一象限內(nèi)曲線C的面積小于,則曲線C的總面積小于4π.故③錯(cuò)誤.故選:C.8、A【解析】先求,然后求.【詳解】,,.故選:A9、A【解析】求出圓關(guān)于軸的對(duì)稱圓的圓心坐標(biāo),以及半徑,然后求解圓與圓的圓心距減去兩個(gè)圓的半徑和,即可求出的最小值.【詳解】圓關(guān)于軸對(duì)稱圓的圓心坐標(biāo),半徑為1,圓的圓心坐標(biāo)為,半徑為3,易知,當(dāng)三點(diǎn)共線時(shí),取得最小值,的最小值為圓與圓的圓心距減去兩個(gè)圓的半徑和,即:.故選:A.注意:9至12題為多選題10、A【解析】根據(jù)列聯(lián)表計(jì)算,對(duì)照臨界值即可得出結(jié)論【詳解】根據(jù)列聯(lián)表,計(jì)算,由臨界值表可知,有95%的把握認(rèn)為藥物有效,A正確故選:A11、A【解析】根據(jù)題設(shè)可得關(guān)于的不等式,從而可求的取值范圍.【詳解】設(shè)公差為,因?yàn)?,,所以,即,從?故選:A.12、A【解析】求得外接球的半徑,進(jìn)而計(jì)算出外接球體積.【詳解】設(shè),正八面體的棱長(zhǎng)為,根據(jù)正八面體的性質(zhì)可知:,所以是外接球的球心,且半徑,所以外接球的體積為.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)雙曲線的定義由焦點(diǎn)坐標(biāo)求出,即可得到雙曲線方程,從而得到其漸近線方程;【詳解】解:因?yàn)殡p曲線C:的一個(gè)焦點(diǎn)坐標(biāo)為,即,,又,所以,所以雙曲線方程為,所以雙曲線的漸近線為;故答案為:14、2【解析】先按照平均數(shù)算出a,再按照方差的定義計(jì)算即可?!驹斀狻俊撸?,方差,故答案為:2.15、84【解析】先求出該選手射擊兩次,兩次命中的環(huán)數(shù)都低于9環(huán)的概率,由對(duì)立事件的概率可得答案.【詳解】該選手射擊一次,命中的環(huán)數(shù)低于9環(huán)的概率為該選手射擊兩次,兩次命中的環(huán)數(shù)都低于9環(huán)的概率為所以他至少命中一次9環(huán)或10環(huán)的概率為故答案:0.8416、2【解析】根據(jù)極差的定義可求得a的值,再根據(jù)方差公式可求得結(jié)果.【詳解】因?yàn)樵摻M數(shù)據(jù)的極差為5,,所以,解得.因?yàn)?,所以該組數(shù)據(jù)的方差為故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)單調(diào)遞增區(qū)間是(4,+∞),單調(diào)遞減區(qū)間是(0,4);(2)證明見解析.【解析】(1)求的導(dǎo)函數(shù),結(jié)合定義域及導(dǎo)數(shù)的符號(hào)確定單調(diào)區(qū)間;(2)法一:討論、時(shí)的零點(diǎn)情況,即可得,構(gòu)造,利用導(dǎo)數(shù)研究在(0,2a)恒成立,結(jié)合單調(diào)性證明不等式;法二:設(shè),由零點(diǎn)可得,進(jìn)而應(yīng)用分析法將結(jié)論轉(zhuǎn)化為證明,綜合換元法、導(dǎo)數(shù)證明結(jié)論即可.【小問1詳解】函數(shù)的定義域?yàn)?0,+∞),當(dāng)a=2時(shí),,則令得,x>4;令得,0<x<4;所以,單調(diào)遞增區(qū)間是(4,+∞);單調(diào)遞減區(qū)間是(0,4).【小問2詳解】法一:當(dāng)a≤0時(shí),>0在(0,+∞)上恒成立,故函數(shù)不可能有兩個(gè)不相等的零點(diǎn),當(dāng)a>0時(shí),函數(shù)在(2a,+∞)上單調(diào)遞增,在(0,2a)上單調(diào)遞減,因?yàn)楹瘮?shù)有兩個(gè)不相等的零點(diǎn),則,不妨設(shè),設(shè),(0<x<2a),則,所以,由a>0知:在(0,2a)恒成立,所以在(0,2a)上單調(diào)遞減,即>=0,所以,即,又,故,因?yàn)椋?,因?yàn)楹瘮?shù)在(2a,+∞)上單調(diào)遞增,所以,即法二:不妨設(shè),由題意得,,得,即,要證,只需證,即證:,即,令,,則,所以在區(qū)間(1,+∞)單調(diào)遞減,故<=0,即恒成立因此,所以.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:第二問,法一:應(yīng)用極值點(diǎn)偏移方法構(gòu)造,將問題轉(zhuǎn)化為在(0,2a)恒成立,法二:根據(jù)零點(diǎn)可得,再由分析法將問題化為證明,構(gòu)造函數(shù),綜合運(yùn)用換元法、導(dǎo)數(shù)證明結(jié)論.18、(1);(2).【解析】(1)利用等差數(shù)列的基本量,根據(jù)題意,列出方程,即可求得公差以及通項(xiàng)公式;(2)根據(jù)(1)中所求,結(jié)合等差數(shù)列的前項(xiàng)和的公式,求得,以及,再利用等比數(shù)列的前項(xiàng)和公式求得.【小問1詳解】因?yàn)?,所以,故可得,所?【小問2詳解】因?yàn)?,所?于是,令,則.顯然數(shù)列是等比數(shù)列,且,公比,所以數(shù)列的前n項(xiàng)和.19、(1);.(2)或.【解析】(1)首先求得交點(diǎn)坐標(biāo),然后利用待定系數(shù)法確定直線方程,再根據(jù)兩平行直線之間距離公式即可計(jì)算距離;(2)根據(jù)截距式方程的求法解答【小問1詳解】由得設(shè)直線的方程為,代入點(diǎn)坐標(biāo)得,∴直線的方程為∴兩平行線間的距離【小問2詳解】當(dāng)直線過坐標(biāo)原點(diǎn)時(shí),直線的方程為,即;當(dāng)直線不過坐標(biāo)原點(diǎn)時(shí),設(shè)直線的方程為,代入點(diǎn)坐標(biāo)得,∴直線的方程的方程為,即綜上所述,直線的方程為或20、(1)(2)【解析】(1)建立如圖所示的空間直角坐標(biāo)系,用空間向量法求線面角;(2)用空間向量法求二面角【小問1詳解】以D為坐標(biāo)原點(diǎn),射線方向?yàn)閤,y,z軸正方向建立空間直角坐標(biāo)系.當(dāng)時(shí),,所以,設(shè)平面的法向量為,所以,即不妨得,,又,所以,則【小問2詳解】在長(zhǎng)方體中,因?yàn)槠矫?,所以平面平面,因?yàn)槠矫媾c平面交于,因?yàn)樗倪呅螢檎叫?,所以,所以平面,即為平面的一個(gè)法向量,,所以,又平面的法向量為,所以.21、(1)證明見解析;(2).【解析】(1)連接與交于點(diǎn)O,連接OE,得到,再利用線面平行的判定定理證明即可;(2)根據(jù),底面,建立空間直角坐標(biāo)系,求得平面的一個(gè)法向量,再根據(jù)底面,得到平面一個(gè)法向量,然后由夾角公式求解.【小問1詳解】如圖所示:連接與交于點(diǎn)O,連接OE,如圖,由分別為的中點(diǎn)所以,又平面,平面

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論