2025屆江蘇省高級中學高一上數(shù)學期末檢測模擬試題含解析_第1頁
2025屆江蘇省高級中學高一上數(shù)學期末檢測模擬試題含解析_第2頁
2025屆江蘇省高級中學高一上數(shù)學期末檢測模擬試題含解析_第3頁
2025屆江蘇省高級中學高一上數(shù)學期末檢測模擬試題含解析_第4頁
2025屆江蘇省高級中學高一上數(shù)學期末檢測模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆江蘇省高級中學高一上數(shù)學期末檢測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.下列說法中正確的是()A.存在只有4個面的棱柱 B.棱柱的側面都是四邊形C.正三棱錐的所有棱長都相等 D.所有幾何體的表面都能展開成平面圖形2.關于的不等式的解集為,,,則關于的不等式的解集為()A. B.C. D.3.設,,,則的大小關系為()A. B.C. D.4.已知,,,則的大小關系為A B.C. D.5.已知集合,則A B.C. D.6.在平面直角坐標系中,大小為的角始邊與軸非負半軸重合,頂點與原點O重合,其終邊與圓心在原點,半徑為3的圓相交于一點P,點Q坐標為,則的面積為()A. B.C. D.27.下列函數(shù)中,最小正周期為的奇函數(shù)是()A. B.C. D.8.下列函數(shù)中,在R上為增函數(shù)的是()A.y=2-xC.y=2x9.如圖所示,一個水平放置的平面圖形的直觀圖是一個底角為45°,腰和上底長均為1的等腰梯形,則該平面圖形的面積等于()A. B.C. D.10.的值為A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知,,則的值為_______.12.設,則________.13.已知函數(shù),設,,若成立,則實數(shù)的最大值是_______14.已知直線與圓相切,則的值為________15.下列命題中所有正確的序號是______________①函數(shù)最小值為4;②函數(shù)的定義域是,則函數(shù)的定義域為;③若,則的取值范圍是;④若(,),則16.____.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.求同時滿足條件:①與軸相切,②圓心在直線上,③直線被截得的弦長為的圓的方程18.已知函數(shù)(1)若的值域為R,求實數(shù)a的取值范圍;(2)若,解關于x的不等式.19.如圖,在平面直角坐標系中,已知以為圓心的圓及其上一點.①設圓與軸相切,與圓外切,且圓心在直線上,求圓的標準方程②設點滿足存在圓上的兩點和,使得四邊形為平行四邊形,求實數(shù)的取值范圍20.已知函數(shù)是定義在上的奇函數(shù),且時,.(1)求函數(shù)的解析式;(2)若任意恒成立,求實數(shù)的取值范圍.21.已知函數(shù),1求的值;2若,,求

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】對于A、B:由棱柱的定義直接判斷;對于C:由正三棱錐的側棱長和底面邊長不一定相等,即可判斷;對于D:由球的表面不能展開成平面圖形即可判斷【詳解】對于A:棱柱最少有5個面,則A錯誤;對于B:棱柱的所有側面都是平行四邊形,則B正確;對于C:正三棱錐的側棱長和底面邊長不一定相等,則C錯誤;對于D:球的表面不能展開成平面圖形,則D錯誤故選:B2、A【解析】根據(jù)題意可得1,是方程的兩根,從而得到的關系,然后再解不等式從而得到答案.【詳解】由題意可得,且1,是方程的兩根,為方程的根,,則不等式可化為,即,不等式的解集為故選:A3、D【解析】利用指數(shù)函數(shù)和對數(shù)函數(shù)的單調性即可判斷.【詳解】,,,,.故選:D.4、A【解析】利用對數(shù)的性質,比較a,b的大小,將b,c與1進行比較,即可得出答案【詳解】令,結合對數(shù)函數(shù)性質,單調遞減,,,.【點睛】本道題考查了對數(shù)、指數(shù)比較大小問題,結合相應性質,即可得出答案5、C【解析】分析:先解指數(shù)不等式得集合A,再根據(jù)偶次根式被開方數(shù)非負得集合B,最后根據(jù)補集以及交集定義求結果.詳解:因為,所以,因為,所以因此,選C.點睛:合的基本運算的關注點(1)看元素組成.集合是由元素組成的,從研究集合中元素的構成入手是解決集合運算問題的前提(2)有些集合是可以化簡的,先化簡再研究其關系并進行運算,可使問題簡單明了,易于解決(3)注意數(shù)形結合思想的應用,常用的數(shù)形結合形式有數(shù)軸、坐標系和Venn圖6、B【解析】根據(jù)題意可得、,結合三角形的面積公式計算即可.【詳解】由題意知,,,所以.故選:B7、C【解析】根據(jù)題意,分別判斷四個選項中的函數(shù)的最小正周期和奇偶性即可,其中A、C選項中的函數(shù)先要用誘導公式化簡.【詳解】A選項:,其定義域為,,為偶函數(shù),其最小正周期為,故A錯誤.B選項:,其最小正周期為,函數(shù)定義域為,,函數(shù)不是奇函數(shù),故B錯誤.C選項:其定義域為,,函數(shù)為奇函數(shù),其最小正周期為,故C正確.D選項:函數(shù)定義域為,,函數(shù)為偶函數(shù),其最小正周期,故D錯誤.故選:C.8、C【解析】對于A,y=2-x=12x,在R上是減函數(shù);對于B,y=x2在-∞,0上是減函數(shù),在0,+∞上是增函數(shù);對于C,當【詳解】解:對于A,y=2-x=12對于B,y=x2在-∞,0對于C,當x≥0時,y=2x是增函數(shù),當x<0時,y=x是增函數(shù),所以函數(shù)fx對于D,y=lgx的定義域是0,+∞故選:C.9、D【解析】根據(jù)斜二測畫法的規(guī)則,得出該平面圖象的特征,結合面積公式,即可求解.【詳解】由題意,根據(jù)斜二測畫法規(guī)則,可得該平面圖形是上底長為,下底長為,高為的直角梯形,所以計算得面積為.故選:D.10、B【解析】.故選B.二、填空題:本大題共6小題,每小題5分,共30分。11、-.【解析】將和分別平方計算可得.【詳解】∵,∴,∴,∴,又∵,∴,∴,故答案為:-.【點晴】此題考同腳三角函數(shù)基本關系式應用,屬于簡單題.12、2【解析】先求出,再求的值即可【詳解】解:由題意得,,所以,故答案為:213、【解析】設不等式的解集為,從而得出韋達定理,由可得,要使,即不等式的解集為,則可得,以及是方程的兩個根,再得出其韋達定理,比較韋達定理可得出,從而求出與的關系,代入,得出答案.【詳解】,則由題意設集合,即不等式的解集為所以是方程的兩個不等實數(shù)根則,則由可得,由,所以不等式的解集為所以是方程,即的兩個不等實數(shù)根,所以故,,則,則,則由,即,即,解得綜上可得,所以的最大值為故答案:14、2【解析】直線與圓相切,圓心到直線的距離等于半徑,列出方程即可求解的值【詳解】依題意得,直線與圓相切所以,即,解得:,又,故答案為:215、③④【解析】利用基本不等式可判斷①正誤;利用抽象函數(shù)的定義域可判斷②的正誤;解對數(shù)不等式可判斷③;構造函數(shù),函數(shù)在上單調遞減,結合,求得可判斷④.詳解】對于①,當時,,由基本不等式可得,當且僅當時,即當時,等號成立,但,故等號不成立,所以,函數(shù),的最小值不是,①錯誤;對于②,若函數(shù)的定義域為,則有,解得,即函數(shù)的定義域為,②錯誤;對于③,若,所以當時,解得:,不滿足;當時,解得:,所以的取值范圍是,③正確;對于④,令,函數(shù)在上單調遞減,由得,則,即,故④正確.故答案為:③④.16、.【解析】本題直接運算即可得到答案.【詳解】解:,故答案為:.【點睛】本題考查指數(shù)冪的運算、對數(shù)的運算,是基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、或.【解析】根據(jù)題意,設圓心為,圓被直線截得的弦為為的中點,連結.由垂徑定理和點到直線的距離公式,建立關于的方程并解出值,即可得到滿足條件的圓的標準方程【詳解】試題解析:設所求的圓的方程是,則圓心到直線的距離為,①由于所求的圓與x軸相切,所以②又因為所求圓心在直線上,則③聯(lián)立①②③,解得,或.故所求的圓的方程是或.18、(1)或.(2)見解析.【解析】(1)當時,的值域為,當時,的值域為,如滿足題意則,解之即可;(2)當時,,即恒成立,當時,即,分類討論解不等式即可.試題解析:(1)當時,的值域為當時,的值域為,的值域為,解得或的取值范圍是或.(2)當時,,即恒成立,當時,即(?。┊敿磿r,無解:(ⅱ)當即時,;(ⅲ)當即時①當時,②當時,綜上(1)當時,解集為(2)當時,解集(3)當時,解集為(4)當時,解集為19、①..②.【解析】①.由題意利用待定系數(shù)法可得圓的標準方程為②.由題意四邊形為平行四邊形,則,據(jù)此有,求解不等式可得實數(shù)的取值范圍是試題解析:①圓的標準方程為:,則圓心為,設,半徑為,則,在同一豎直線上則,,即圓的標準方程為②∵四邊形為平行四邊形,∴,∵,在圓上,∴,則,即20、(1);(2).【解析】(1)由奇函數(shù)的性質可得出,設,由奇函數(shù)的性質可得出可得出的表達式,綜合可得出結果;(2)分析可知函數(shù)為上的增函數(shù),由原不等式變形可得出,利用參變量分離法結合二次函數(shù)的基本性質可求得實數(shù)的取值范圍.【詳解】(1)因為函數(shù)是定義在上的奇函數(shù),所以,且.設,則,所以,所以;(2)因為對任意恒成立,所以,又是定義在上的奇函數(shù),所以,作出函

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論