版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
內(nèi)蒙古呼和浩特市金山學(xué)校2025屆高二上數(shù)學(xué)期末學(xué)業(yè)水平測試試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在中,,則邊的長等于()A. B.C. D.22.設(shè)是雙曲線與圓在第一象限的交點,,分別是雙曲線的左,右焦點,若,則雙曲線的離心率為()A. B.C. D.3.某市統(tǒng)計局網(wǎng)站公布了2017年至2020年該市政府部門網(wǎng)站的每年的兩項訪問量,數(shù)據(jù)如下:年度項目2017年2018年2019年2020年獨立用戶訪問總量(單位:個)2512573924400060989網(wǎng)站總訪問量(單位:次)23435370348194783219288下列表述中錯誤的是()A.2017年至2018年,兩項訪問量都增長幅度較大;B.2018年至2019年,兩項訪問量都有所回落;C.2019年至2020年,兩項訪問量都又有所增長;D.從數(shù)據(jù)可以看出,該市政府部門網(wǎng)站的兩項訪問量都呈逐年增長態(tài)勢4.已知是空間的一個基底,若,,若,則()A B.C.3 D.5.已知命題:;:若,則,則下列判斷正確的是()A.為真,為真,為假 B.為真,為假,為真C.為假,為假,為假 D.為真,為假,為假6.已知圓:和點,是圓上一點,線段的垂直平分線交于點,則點的軌跡方程是:()A. B.C. D.7.公比為的等比數(shù)列,其前項和為,前項積為,滿足,.則下列結(jié)論正確的是()A.的最大值為B.C.最大值為D.8.對任意實數(shù),在以下命題中,正確的個數(shù)有()①若,則;②若,則;③若,則;④若,則A. B.C. D.9.如圖,在四棱錐中,底面ABCD是平行四邊形,已知,,,,則()A. B.C. D.10.金剛石的成分為純碳,是自然界中天然存在的最堅硬物質(zhì),它的結(jié)構(gòu)是由8個等邊三角形組成的正八面體.若某金剛石的棱長為2,則它的體積為()A. B.C. D.11.若數(shù)列滿足,,則該數(shù)列的前2021項的乘積是()A. B.C.2 D.112.雙曲線的離心率為,焦點到漸近線的距離為,則雙曲線的焦距等于A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.甲、乙兩人下棋,甲獲勝的概率為,乙獲勝的概率為,則甲、乙兩人下成和棋的概率為___________.14.已知向量,,,則___________.15.已知橢圓C:的左右焦點分別為,,O為坐標(biāo)原點,以下說法正確的是______①過點的直線與橢圓C交于A,B兩點,則的周長為8②橢圓C上存在點P,使得③橢圓C的離心率為④P為橢圓上一點,Q為圓上一點,則線段PQ的最大長度為316.橢圓的右焦點是,兩點是橢圓的左頂點和上頂點,若△是直角三角形,則橢圓的離心率是________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐P—ABCD中,底面ABCD為矩形,平面PAD⊥平面ABCD,PA?PD,E,F(xiàn)分別為AD,PB的中點.求證:(1)EF//平面PCD;(2)平面PAB?平面PCD18.(12分)已知橢圓的離心率為,短軸端點到焦點的距離為2(1)求橢圓的方程;(2)設(shè)為橢圓上任意兩點,為坐標(biāo)原點,且以為直徑的圓經(jīng)過原點,求證:原點到直線的距離為定值,并求出該定值19.(12分)如圖,已知橢圓的焦點是圓與x軸的交點,橢圓C的長半軸長等于圓O的直徑(1)求橢圓C的方程;(2)F為橢圓C的右焦點,A為橢圓C的右頂點,點B在線段FA上,直線BD,BE與橢圓C的一個交點分別是D,E,直線BD與直線BE的傾斜角互補,直線BD與圓O相切,設(shè)直線BD的斜率為.當(dāng)時,求k20.(12分)設(shè)等差數(shù)列的前項和為,已知.(1)求數(shù)列的通項公式;(2)當(dāng)為何值時,最大,并求的最大值.21.(12分)已知函數(shù),為的導(dǎo)函數(shù)(1)求的定義域和導(dǎo)函數(shù);(2)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;(3)若對,都有成立,且存在,使成立,求實數(shù)a的取值范圍22.(10分)已知函數(shù).(1)求的單調(diào)區(qū)間;(2)求在區(qū)間上的最值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】由余弦定理求解【詳解】由余弦定理,得,即,解得(負(fù)值舍去)故選:A2、B【解析】先由雙曲線定義與題中條件得到,,求出,,再由題意得到,即可根據(jù)勾股定理求出結(jié)果.【詳解】解:根據(jù)雙曲線定義:,,∴,∴,,,∴是圓的直徑,∴,中,,得故選【點睛】本題主要考查求雙曲線的離心率,熟記雙曲線的簡單性質(zhì)即可,屬于常考題型.3、D【解析】根據(jù)表格數(shù)據(jù),結(jié)合各選項的描述判斷正誤即可.【詳解】A:2017年至2018年,兩項訪問量分別增長、,顯然增長幅度相較于后兩年是最大的,正確;B:2018年至2019年,兩項訪問量相較于2017年至2018年都有回落,正確;C:2019年至2020年,兩項訪問量分別增長、,正確;D:由B分析知,該市政府部門網(wǎng)站的兩項訪問量在2018年至2019年有回落,而不是逐年增長態(tài)勢,錯誤.故選:D.4、C【解析】由,可得存在實數(shù),使,然后將代入化簡可求得結(jié)果【詳解】,,因為,所以存在實數(shù),使,所以,所以,所以,得,,所以,故選:C5、D【解析】先判斷出命題,的真假,即可判斷.【詳解】因為成立,所以命題為真,由可得或,所以命題為假命題,所以為真,為假,為假.故選:D.6、B【解析】先由在線段的垂直平分線上得出,再由題意得出,進而由橢圓定義可求出點的軌跡方程.【詳解】如圖,因為在線段的垂直平分線上,所以,又點在圓上,所以,因此,點在以、為焦點的橢圓上.其中,,則.從而點的軌跡方程是.故選:B.7、A【解析】根據(jù)已知條件,判斷出,即可判斷選項D,再根據(jù)等比數(shù)列的性質(zhì),判斷,,由此判斷出選項A,B,C.【詳解】根據(jù)題意,等比數(shù)列滿足條件,,,若,則,則,,則,這與已知條件矛盾,所以不符合題意,故選項D錯誤;因為,,,所以,,,則,,數(shù)列前2021項都大于1,從第2022項開始都小于1,因此是數(shù)列中的最大值,故選項A正確由等比數(shù)列的性質(zhì),,故選項B不正確;而,由以上分析可知其無最大值,故C錯誤;故選:A8、B【解析】直接利用不等式的基本性質(zhì)判斷.【詳解】①因為,則,根據(jù)不等式性質(zhì)得,故正確;②當(dāng)時,,而,故錯誤;③因為,所以,即,故正確;④當(dāng)時,,故錯誤;故選:B9、A【解析】利用空間向量加法法則直接求解【詳解】連接BD,如圖,則故選:A10、C【解析】由幾何關(guān)系先求出一個正四面體的高,再結(jié)合錐體體積公式即可求解正八面體的體積.【詳解】如圖,設(shè)底面中心為,連接,由幾何關(guān)系知,,則正八面體體積為.故選:C11、C【解析】先由數(shù)列滿足,,計算出前5項,可得,且,再利用周期性即可得到答案.【詳解】因為數(shù)列滿足,,所以,同理可得,…所以數(shù)列每四項重復(fù)出現(xiàn),即,且,而,所以該數(shù)列的前2021項的乘積是.故選:C.12、D【解析】不妨設(shè)雙曲線方程為,則,即設(shè)焦點為,漸近線方程為則又解得.則焦距為.選:D二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】直接根據(jù)概率和為1計算得到答案.【詳解】.故答案為:.14、2【解析】由空間向量數(shù)量積的坐標(biāo)運算可得答案.【詳解】因為,,,所以,.故答案為:2.15、①②④【解析】根據(jù)橢圓的幾何性質(zhì)結(jié)合的周長計算可判斷①;根據(jù),可通過以為直徑作圓,是否與橢圓相交判斷②;求出橢圓的離心率可判斷③;計算橢圓上的點到圓心的距離的最大值,即可判斷④.【詳解】對于①,由題意知:的周長等于,故①正確;對于②,,故以為直徑作圓,與橢圓相交,交點即設(shè)為P,故橢圓C上存在點P,使得,故②正確;對于③,,故③錯誤;對于④,設(shè)P為橢圓上一點,坐標(biāo)為,則,故,因為,所以的最大值為2,故線段PQ的最大長度為2+1=3,故④正確,故答案為:①②④.16、【解析】由題設(shè)易知,應(yīng)用斜率的兩點式及橢圓參數(shù)關(guān)系可得,進而求橢圓離心率.【詳解】由題設(shè),,,,又△是直角三角形,顯然,所以,可得,則,解得,又,所以.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)見解析【解析】(1)取BC中點G,連結(jié)EG,F(xiàn)G,推導(dǎo)出,,從而平面平面,由此能得出結(jié)論;(2)推導(dǎo)出,從而平面PAD,即得,結(jié)合得出平面PCD,由此能證明結(jié)論成立.【詳解】(1)取BC中點G,連結(jié)EG,F(xiàn)G,∵E,F(xiàn)分別是AD,PB的中點,∴,,∴面,面,∵,∴平面平面,∵平面,∴平面.(2)因為底面ABCD為矩形,所以,又因為平面平面ABCD,平面平面,平面ABCD,所以平面PAD因為平面PAD,所以.又因為,,所以平面PCD因為平面PAB,所以平面平面PCD【點睛】本題考查線線垂直、線面平行、面面垂直的證明,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查運算求解能力,是中檔題.18、(1)(2)證明見解析,定值為【解析】(1)根據(jù)題意得到,,得到橢圓方程.(2)考慮直線斜率存在和不存在兩種情況,聯(lián)立方程,根據(jù)韋達定理得到根與系數(shù)的關(guān)系,將題目轉(zhuǎn)化為,化簡得到,代入計算得到答案.【小問1詳解】橢圓的離心率為,短軸端點到焦點的距離為,故,,故橢圓方程為.【小問2詳解】當(dāng)直線斜率存在時,設(shè)直線方程為,,,則,即,,以為直徑的圓經(jīng)過原點,故,即,即,化簡整理得到:,原點到直線的距離為.當(dāng)直線斜率不存在時,為等腰直角三角形,設(shè),則,解得,即直線方程為,到原點的距離為.綜上所述:原點到直線的距離為定值.【點睛】本題考查了橢圓方程,橢圓中的定值問題,意在考查學(xué)生的計算能力,轉(zhuǎn)化能力和綜合應(yīng)用能力,其中將圓過原點轉(zhuǎn)化為是解題的關(guān)鍵.19、(1);(2)-1【解析】(1)由題設(shè)可得,求出參數(shù)b,即可寫出橢圓C的方程;(2)延長線段DB交橢圓C于點,根據(jù)對稱性設(shè)B,為,,聯(lián)立橢圓方程,應(yīng)用韋達定理并結(jié)合已知條件可得,直線與圓相切可得,進而求參數(shù)t,即可求直線BD的斜率.【小問1詳解】因為圓與x軸的交點分別為,,所以橢圓C的焦點分別為,,∴,根據(jù)條件得,∴,故橢圓C的方程為【小問2詳解】延長線段DB交橢圓C于點,因直線BD與直線BE的傾斜角互補,根據(jù)對稱性得由條件可設(shè)B的坐標(biāo)為,設(shè)D,的縱坐標(biāo)分別為,,直線的方程為,由于,即,所以由得:∴,∴①,②,由①得:,代入②得,∴∵直線與圓相切,∴,即∴,解得,又,∴,故,即直線BD斜率【點睛】關(guān)鍵點點睛:將已知線段的長度關(guān)系轉(zhuǎn)化為D,的縱坐標(biāo)的數(shù)量關(guān)系,設(shè)直線的含參方程,聯(lián)立橢圓方程及其與圓的相切求參數(shù)關(guān)系,進而求參數(shù)即可.20、(1)(2)n為6或7;126【解析】(1)設(shè)等差數(shù)列的公差為d,利用等差數(shù)列的通項公式求解;(2)由,利用二次函數(shù)的性質(zhì)求解.【小問1詳解】解:設(shè)等差數(shù)列的公差為d,因為.所以,解得,所以;【小問2詳解】,當(dāng)或7時,最大,的最大值是126.21、(1),(2)在單減,也單減,無增區(qū)間(3)【解析】(1)根據(jù)分母不等于0,對數(shù)的真數(shù)大于零即可求得函數(shù)的定義域,根據(jù)基本初等函數(shù)的求導(dǎo)公式及商的導(dǎo)數(shù)公式即可求出函數(shù)的導(dǎo)函數(shù);(2)求出函數(shù)的導(dǎo)函數(shù),再根據(jù)導(dǎo)函數(shù)的符號即可得出答案;(3)若對,都有成立,即,即,令,,只要即可,利用導(dǎo)數(shù)求出函數(shù)的最小值即可求出的范圍,,,求出函數(shù)的值域,根據(jù)存在,使成立,則0在函數(shù)的值域中,從而可得出的范圍,即可得解.【小問1詳解】解:的定義域為,;【小問2詳解】解:當(dāng)時,,恒成立,所以在和上遞減;【小問3詳解】解:若對,都有成立,即,即,令,,則,對于函數(shù),,當(dāng)時,,當(dāng)時,,所以函數(shù)在上遞增,在上遞減,所以,當(dāng)時,,所以,所以,故恒成立,在為減函數(shù),所以,所以,由(1)知,,所以,記,令,,則原式的值域為,因為存在,使成立,所以,,所以,綜上,【點睛】本題考查了函數(shù)的定義域及導(dǎo)數(shù)的四則運算,考查了利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度新能源汽車批量訂購合同4篇
- 2025年度體育賽事代理運營管理合同樣本4篇
- 2025年度生態(tài)停車場車位購置協(xié)議4篇
- 生物活性營養(yǎng)土項目可行性研究報告模板范文(立項備案項目申請)
- 2025年新生入學(xué)教育法律協(xié)議書(綜合服務(wù))3篇
- 2025年度個人信用評分服務(wù)協(xié)議3篇
- 2025年度個人股權(quán)交易合同范本:股權(quán)轉(zhuǎn)讓流程與稅務(wù)籌劃4篇
- 2025年度企業(yè)項目合作協(xié)議范本4篇
- 2025年浙江澤興環(huán)保工程有限公司招聘筆試參考題庫含答案解析
- 二零二五年度林業(yè)生態(tài)恢復(fù)苗木采購合同文本4篇
- 安徽省合肥市包河區(qū)2023-2024學(xué)年九年級上學(xué)期期末化學(xué)試題
- 《酸堿罐區(qū)設(shè)計規(guī)范》編制說明
- PMC主管年終總結(jié)報告
- 售樓部保安管理培訓(xùn)
- 倉儲培訓(xùn)課件模板
- 2025屆高考地理一輪復(fù)習(xí)第七講水循環(huán)與洋流自主練含解析
- GB/T 44914-2024和田玉分級
- 2024年度企業(yè)入駐跨境電商孵化基地合作協(xié)議3篇
- 《形勢與政策》課程標(biāo)準(zhǔn)
- 2023年海南省公務(wù)員錄用考試《行測》真題卷及答案解析
- 橋梁監(jiān)測監(jiān)控實施方案
評論
0/150
提交評論