版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
湖南省株洲市醴陵四中2025屆數(shù)學(xué)高二上期末經(jīng)典模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.直線在y軸上的截距為()A. B.C. D.2.如果,,那么直線不經(jīng)過的象限是()A.第一象限 B.第二象限C.第三象限 D.第四象限3.如圖,在直三棱柱中,,,E是的中點(diǎn),則直線BC與平面所成角的正弦值為()A. B.C. D.4.某社區(qū)醫(yī)院為了了解社區(qū)老人與兒童每月患感冒的人數(shù)y(人)與月平均氣溫x(℃)之間的關(guān)系,隨機(jī)統(tǒng)計(jì)了某4個(gè)月的患?。ǜ忻埃┤藬?shù)與當(dāng)月平均氣溫,其數(shù)據(jù)如下表:月平均氣溫x(℃)171382月患病y(人)24334055由表中數(shù)據(jù)算出線性回歸方程中的,氣象部門預(yù)測(cè)下個(gè)月的平均氣溫約為9℃,據(jù)此估計(jì)該社區(qū)下個(gè)月老年人與兒童患病人數(shù)約為()A.38 B.40C.46 D.585.拋物線的準(zhǔn)線方程是A.x=1 B.x=-1C. D.6.已知在平面直角坐標(biāo)系中,圓的方程為,直線過點(diǎn)且與直線垂直.若直線與圓交于兩點(diǎn),則的面積為A.1 B.C.2 D.7.已知拋物線的焦點(diǎn)為F,過點(diǎn)F作傾斜角為的直線l與拋物線交于兩點(diǎn),則POQ(O為坐標(biāo)原點(diǎn))的面積S等于()A. B.C. D.8.等比數(shù)列的各項(xiàng)均為正數(shù),已知向量,,且,則A.12 B.10C.5 D.9.“楊輝三角”是中國古代重要的數(shù)學(xué)成就,它比西方的“帕斯卡三角形”早了300多年,如圖是由“楊輝三角”拓展而成的三角形數(shù)陣,記為圖中虛線上的數(shù)1,3,6,10,…構(gòu)成的數(shù)列的第n項(xiàng),則的值為()A.1225 B.1275C.1326 D.136210.已知,記M到x軸的距離為a,到y(tǒng)軸的距離為b,到z軸的距離為c,則()A. B.C. D.11.執(zhí)行如圖所示的程序框圖,若輸出的的值為,則輸入的的值可能為()A.96 B.97C.98 D.9912.如圖給出的是一道典型的數(shù)學(xué)無字證明問題:各矩形塊中填寫的數(shù)字構(gòu)成一個(gè)無窮數(shù)列,所有數(shù)字之和等于1.按照?qǐng)D示規(guī)律,有同學(xué)提出了以下結(jié)論,其中正確的是()A.由大到小的第八個(gè)矩形塊中應(yīng)填寫的數(shù)字為B.前七個(gè)矩形塊中所填寫的數(shù)字之和等于C.矩形塊中所填數(shù)字構(gòu)成的是以1為首項(xiàng),為公比的等比數(shù)列D.按照這個(gè)規(guī)律繼續(xù)下去,第n-1個(gè)矩形塊中所填數(shù)字是二、填空題:本題共4小題,每小題5分,共20分。13.秦九韶出生于普州(今資陽市安岳縣),是我國南宋時(shí)期偉大的數(shù)學(xué)家,他創(chuàng)立的秦九韶算法歷來為人稱道,其本質(zhì)是將一個(gè)次多項(xiàng)式寫成個(gè)一次式相組合的形式,如可將寫成,由此可得__________14.已知向量、滿足,,且,則與的夾角為___________.15.已知雙曲線的左、右焦點(diǎn)分別為,,O為坐標(biāo)原點(diǎn),點(diǎn)M是雙曲線左支上的一點(diǎn),若,,則雙曲線的離心率是____________16.設(shè)為等差數(shù)列的前n項(xiàng)和,若,,則______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在直三棱柱中,,分別是棱的中點(diǎn),點(diǎn)在線段上.(1)當(dāng)直線與平面所成角最大時(shí),求線段的長度;(2)是否存在這樣的點(diǎn),使平面與平面所成的二面角的余弦值為,若存在,試確定點(diǎn)的位置,若不存在,說明理由.18.(12分)已知等差數(shù)列的首項(xiàng)為2,公差為8.在中每相鄰兩項(xiàng)之間插入三個(gè)數(shù),使它們與原數(shù)列的項(xiàng)一起構(gòu)成一個(gè)新的等差數(shù)列.(1)求數(shù)列的通項(xiàng)公式;(2)若,,,,是從中抽取的若干項(xiàng)按原來的順序排列組成的一個(gè)等比數(shù)列,,,令,求數(shù)列的前項(xiàng)和.19.(12分)經(jīng)觀測(cè),某種昆蟲的產(chǎn)卵數(shù)y與溫度x有關(guān),現(xiàn)將收集到的溫度和產(chǎn)卵數(shù)的10組觀測(cè)數(shù)據(jù)作了初步處理,得到如下圖的散點(diǎn)圖及一些統(tǒng)計(jì)量表.275731.121.71502368.3630表中,(1)根據(jù)散點(diǎn)圖判斷,與哪一個(gè)適宜作為y與x之間的回歸方程模型?(給出判斷即可,不必說明理由)(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù).試求y關(guān)于x回歸方程.附:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為,.20.(12分)如圖,在直三棱柱中,,,,,分別為,的中點(diǎn)(1)求證:;(2)求直線與平面所成角的正弦值21.(12分)在△中,內(nèi)角所對(duì)的邊分別為,已知(1)求角的大?。唬?)若的面積,求的值22.(10分)已知函數(shù).(Ⅰ)求的單調(diào)遞減區(qū)間;(Ⅱ)若當(dāng)時(shí),恒成立,求實(shí)數(shù)a的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】將代入直線方程求y值即可.【詳解】令,則,得.所以直線在y軸上的截距為.故選:D2、A【解析】將直線化為,結(jié)合已知條件即可判斷不經(jīng)過的象限.【詳解】由題設(shè),直線可寫成,又,,∴,,故直線過二、三、四象限,不過第一象限.故選:A.3、D【解析】以,,的方向分別為x軸、y軸、z軸的正方向,建立空間直角坐標(biāo)系,利用向量法即可求出答案.【詳解】解:由題意知,CA,CB,CC1兩兩垂直,以,,的方向分別為x軸、y軸、z軸的正方向,建立如圖所示的空間直角坐標(biāo)系,則,,,,設(shè)平面的法向量為,則令,得.因?yàn)椋?,故直線BC與平面所成角的正弦值為.故選:D.4、B【解析】由表格數(shù)據(jù)求樣本中心,根據(jù)線性回歸方程過樣本中心點(diǎn),將點(diǎn)代入方程求參數(shù),寫出回歸方程,進(jìn)而估計(jì)下個(gè)月老年人與兒童患病人數(shù).【詳解】由表格得為,由回歸方程中的,∴,解得,即,當(dāng)時(shí),.故選:B.5、C【解析】先把拋物線方程整理成標(biāo)準(zhǔn)方程,進(jìn)而求得p,再根據(jù)拋物線性質(zhì)得出準(zhǔn)線方程【詳解】解:整理拋物線方程得,∴p=∵拋物線方程開口向上,∴準(zhǔn)線方程是y=﹣故答案為C【點(diǎn)睛】本題主要考查拋物線的標(biāo)準(zhǔn)方程和簡單性質(zhì).屬基礎(chǔ)題6、A【解析】∵圓的方程為,即,∴圓的圓心為,半徑為2.∵直線過點(diǎn)且與直線垂直∴直線.∴圓心到直線的距離.∴直線被圓截得的弦長,又∵坐標(biāo)原點(diǎn)到的距離為,∴的面積為.考點(diǎn):1、直線與圓的位置關(guān)系;2、三角形的面積公式.7、A【解析】由拋物線的方程可得焦點(diǎn)的坐標(biāo),由題意設(shè)直線的方程,與拋物線的方程,聯(lián)立求出兩根之和及兩根之積,進(jìn)而求出,的縱坐標(biāo)之差的絕對(duì)值,代入三角形的面積公式求出面積【詳解】拋物線的焦點(diǎn)為,,由題意可得直線的方程為,設(shè),,,,聯(lián)立,整理可得:,則,,所以,所以,故選:A8、C【解析】利用數(shù)量積運(yùn)算性質(zhì)、等比數(shù)列的性質(zhì)及其對(duì)數(shù)運(yùn)算性質(zhì)即可得出【詳解】向量=(,),=(,),且?=4,∴+=4,由等比數(shù)列的性質(zhì)可得:=……===2,則log2(?)=故選C【點(diǎn)睛】本題考查數(shù)量積運(yùn)算性質(zhì)、等比數(shù)列的性質(zhì)及其對(duì)數(shù)運(yùn)算性質(zhì),考查推理能力與計(jì)算能力,屬于中檔題9、B【解析】觀察前4項(xiàng)可得,從而可求得結(jié)果【詳解】由題意可得,……,觀察規(guī)律可得,所以,故選:B10、C【解析】分別求出點(diǎn)M在x軸,y軸,z軸上的投影點(diǎn)的坐標(biāo),再借助空間兩點(diǎn)間距離公式計(jì)算作答.【詳解】設(shè)點(diǎn)M在x軸上的投影點(diǎn),則,而x軸的方向向量,由得:,解得,則,設(shè)點(diǎn)M在y軸上的投影點(diǎn),則,而y軸的方向向量,由得:,解得,則,設(shè)點(diǎn)M在z軸上的投影點(diǎn),則,而z軸的方向向量,由得:,解得,則,所以.故選:C11、D【解析】根據(jù)程序框圖得出的變換規(guī)律后求解【詳解】當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,可得輸出的T關(guān)于t的變換周期為4,而,故時(shí),輸出的值為,故選:D12、B【解析】根據(jù)題意可得矩形塊中的數(shù)字從大到小形成等比數(shù)列,根據(jù)等比數(shù)列的通項(xiàng)公式可求.【詳解】設(shè)每個(gè)矩形塊中的數(shù)字從大到小形成數(shù)列,則可得是首項(xiàng)為,公比為的等比數(shù)列,,所以由大到小的第八個(gè)矩形塊中應(yīng)填寫的數(shù)字為,故A錯(cuò)誤;前七個(gè)矩形塊中所填寫的數(shù)字之和等于,故B正確;矩形塊中所填數(shù)字構(gòu)成的是以為首項(xiàng),為公比的等比數(shù)列,故C錯(cuò)誤;按照這個(gè)規(guī)律繼續(xù)下去,第個(gè)矩形塊中所填數(shù)字是,故D錯(cuò)誤.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用代入法進(jìn)行求解即可.【詳解】故答案為:14、##【解析】根據(jù)向量數(shù)量積的計(jì)算公式即可計(jì)算.【詳解】,,.故答案為:﹒15、5【解析】根據(jù)得出,設(shè),從而利用雙曲線的定義可求出,的關(guān)系,從而可求出答案.【詳解】設(shè)雙曲線的焦距為,則,因?yàn)?,所以,因?yàn)?,不妨設(shè),,由雙曲線的定義可得,所以,,由勾股定理可得,,所以,所以雙曲線的離心率故答案為:.16、36【解析】利用等差數(shù)列前n項(xiàng)和的性質(zhì)進(jìn)行求解即可.【詳解】因?yàn)闉榈炔顢?shù)列的前n項(xiàng)和,所以也成等差數(shù)列,即成等差數(shù)列,所以,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)存在,A1P=【解析】(1)作出線面角,因?yàn)閷?duì)邊為定值,所以鄰邊最小時(shí)線面角最大;(2)建立空間直角坐標(biāo)系,由向量法求二面角列方程可得.【小問1詳解】直線PN與平面A1B1C1所成的角即為直線PN與平面ABC所成角,過P作,即PN與面ABC所成的角,因?yàn)镻H為定值,所以當(dāng)NH最小時(shí)線面角最大,因?yàn)楫?dāng)P為中點(diǎn)時(shí),,此時(shí)NH最小,即PN與平面ABC所成角最大,此時(shí).【小問2詳解】以AB,AC,AA1為x,y,z軸建立空間坐標(biāo)系,則:A(0,0,0),B(1,0,0),C(0,1,0),A1(0,0,1)設(shè)=,,,設(shè)平面PMN的法向量為,則,即,解得,平面AC1C的法向量為,.所以P點(diǎn)為A1B1的四等分點(diǎn),且A1P=.18、(1);(2)【解析】(1)由題意在中每相鄰兩項(xiàng)之間插入三個(gè)數(shù),使它們與原數(shù)列的項(xiàng)一起構(gòu)成一個(gè)新的等差數(shù)列,可知的公差,進(jìn)而可求出其通項(xiàng)公式;(2)根據(jù)題意可得,進(jìn)而得到,再代入中得,利用錯(cuò)位相減即可求出前項(xiàng)和.【小問1詳解】由于等差數(shù)列的公差為8,在中每相鄰兩項(xiàng)之間插入三個(gè)數(shù),使它們與原數(shù)列的項(xiàng)一起構(gòu)成一個(gè)新的等差數(shù)列,則的公差,的首項(xiàng)和首項(xiàng)相同為2,則數(shù)列的通項(xiàng)公式為.【小問2詳解】由于,是等比數(shù)列的前兩項(xiàng),且,,則,則等比數(shù)列的公比為3,則,即,.①.②.①減去②得..19、(1)(2)【解析】(1)根據(jù)散點(diǎn)圖看出樣本點(diǎn)分布在一條指數(shù)函數(shù)的周圍,即可判斷;(2)令,利用最小二乘法即可求出y關(guān)于x的線性回歸方程.【小問1詳解】根據(jù)散點(diǎn)圖判斷,看出樣本點(diǎn)分布在一條指數(shù)函數(shù)的周圍,所以適宜作為y與x之間的回歸方程模型;【小問2詳解】令,則,;,∴;∴y關(guān)于x的回歸方程為.20、(1)證明見解析(2)【解析】(1)利用空間向量求出空間直線的向量積,即可證明兩直線垂直.(2)利用空間向量求直線與平面所成空間角的正弦就是就出平面的法向量與直線的方向向量之間夾角的余弦即可.【小問1詳解】如圖,以為坐標(biāo)原點(diǎn),,,所在直線為,,軸,建立空間直角坐標(biāo)系,則,,,,,因?yàn)?,,所以,即;【小?詳解】設(shè)平面的法向量為因?yàn)?,由,得,令,則所以平面的一個(gè)法向量為,又所以故直線與平面所成角的正弦值為21、(1);(2)【解析】(1)由正弦定理,將條件中的邊化成角,可得,進(jìn)而可得的值;(2)由三角形面積公式可得,再由余弦定理可得,得最后結(jié)論試題解析:(1),又∴又得(2)由,∴又得,∴得考點(diǎn):正弦定理;余弦定理【易錯(cuò)點(diǎn)睛】解三角形問題的兩重性:①作為三角形問題,它必須要用到三角形的內(nèi)角和定理,正弦、余弦定理及其有關(guān)三角形的性質(zhì),及時(shí)進(jìn)行邊角轉(zhuǎn)化,有利于發(fā)現(xiàn)解題的思路;②它畢竟是三角變換,只是角的范圍受到了限制,因此常見的三角變換方法和原則都是適用的,注意“三統(tǒng)一”(即“統(tǒng)一
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年劍術(shù)表演協(xié)議
- 2025年度高端商業(yè)街區(qū)門面店鋪轉(zhuǎn)讓及租賃合作協(xié)議書3篇
- 二零二五版首付款分期購房借款合同樣本3篇
- 2025年度木地板翻新與保養(yǎng)服務(wù)合同4篇
- 2025年新型節(jié)能廚房電器研發(fā)與銷售合作協(xié)議4篇
- 2025年度個(gè)人分紅協(xié)議書包含金融科技分紅條款4篇
- 二零二五年度新型木托盤租賃及信息化管理服務(wù)合同4篇
- 2025年度上市公司合規(guī)管理法律顧問合同
- 二零二五年度同居解除協(xié)議及共同財(cái)產(chǎn)分割與子女監(jiān)護(hù)責(zé)任合同
- 二零二五年度團(tuán)員個(gè)人事跡合同管理法律顧問服務(wù)合同
- 湖北省石首楚源“源網(wǎng)荷儲(chǔ)”一體化項(xiàng)目可研報(bào)告
- 醫(yī)療健康大數(shù)據(jù)平臺(tái)使用手冊(cè)
- 碳排放管理員 (碳排放核查員) 理論知識(shí)考核要素細(xì)目表四級(jí)
- 撂荒地整改協(xié)議書范本
- 診所負(fù)責(zé)人免責(zé)合同范本
- 2024患者十大安全目標(biāo)
- 會(huì)陰切開傷口裂開的護(hù)理查房
- 實(shí)驗(yàn)報(bào)告·測(cè)定雞蛋殼中碳酸鈣的質(zhì)量分?jǐn)?shù)
- 部編版小學(xué)語文五年級(jí)下冊(cè)集體備課教材分析主講
- 電氣設(shè)備建筑安裝施工圖集
- 《工程結(jié)構(gòu)抗震設(shè)計(jì)》課件 第10章-地下建筑抗震設(shè)計(jì)
評(píng)論
0/150
提交評(píng)論