版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2025屆北京一零一中高二數(shù)學第一學期期末復習檢測模擬試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,正方形與矩形所在的平面互相垂直,在上,且平面,則M點的坐標為()A. B.C. D.2.學校開設甲類選修課3門,乙類選修課4門,從中任選3門,甲乙兩類課程都有選擇的不同選法種數(shù)為()A.24 B.30C.60 D.1203.在等比數(shù)列中,,,則()A.2 B.4C.6 D.84.若直線l與橢圓交于點A、B,線段的中點為,則直線l的方程為()A. B.C. D.5.圓與圓的位置關系是()A.相離 B.內(nèi)含C.相切 D.相交6.已知,,則的最小值為()A. B.C. D.7.已知直四棱柱的棱長均為,則直線與側面所成角的正切值為()A. B.C. D.8.已知等差數(shù)列的公差,記該數(shù)列的前項和為,則的最大值為()A.66 B.72C.132 D.1989.設是定義在R上的函數(shù),其導函數(shù)為,滿足,若,則()A. B.C. D.a,b的大小無法判斷10.已知橢圓的左右焦點分別為,,過C上的P作y軸的垂線,垂足為Q,若四邊形是菱形,則C的離心率為()A. B.C. D.11.在中,角A,B,C所對的邊分別為a,b,c,,則的形狀為()A.正三角形 B.等腰直角三角形C.直角三角形 D.等腰三角形12.設函數(shù)在上可導,則等于()A. B.C. D.以上都不對二、填空題:本題共4小題,每小題5分,共20分。13.在等比數(shù)列中,,,若數(shù)列滿足,則數(shù)列的前項和為________14.已知定義在實數(shù)集R上的函數(shù)f(x)滿足f(1)=3,且f(x)的導數(shù)在R上恒有<2(x∈R),則不等式f(x)<2x+1的解集為______.15.若點P為雙曲線上任意一點,則P滿足性質(zhì):點P到右焦點的距離與它到直線的距離之比為離心率e,若C的右支上存在點Q,使得Q到左焦點的距離等于它到直線的距離的6倍,則雙曲線的離心率的取值范圍是______16.設函數(shù),若存在實數(shù)使得成立,則的取值范圍是__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線的焦點為,點在拋物線上,且點的縱坐標為4,(1)求拋物線的方程;(2)過點作直線交拋物線于兩點,試問拋物線上是否存在定點使得直線與的斜率互為倒數(shù)?若存在求出點的坐標,若不存在說明理由18.(12分)如圖,直三棱柱中,底面是邊長為2的等邊三角形,D為棱AC中點.(1)證明:AB1//平面;(2)若面B1BC1與面BC1D的夾角余弦值為,求.19.(12分)在平面直角坐標系中,雙曲線的左、右兩個焦點為、,動點P滿足(1)求動點P的軌跡E的方程;(2)設過且不垂直于坐標軸的動直線l交軌跡E于A、B兩點,問:線段上是否存在一點D,使得以DA、DB為鄰邊的平行四邊形為菱形?若存在,請給出證明:若不存在,請說明理由20.(12分)已知,:,:.(1)若,為真命題,為假命題,求實數(shù)的取值范圍;(2)若是的充分不必要條件,求實數(shù)的取值范圍21.(12分)已知函數(shù),曲線在點處的切線與直線垂直(其中為自然對數(shù)的底數(shù))(1)求的值;(2)是否存在常數(shù),使得對于定義域內(nèi)的任意,恒成立?若存在,求出的值;若不存在,請說明理由22.(10分)已知橢圓的離心率為,短軸長為(1)求橢圓的標準方程;(2)已知,A,B分別為橢圓的左、右頂點,過點A作斜率為的直線交橢圓于另一點E,連接EP并延長交橢圓于另一點F,記直線BF的斜率為.若,求直線EF的方程
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】設點的坐標為,由平面,可得出,利用空間向量數(shù)量積為0求得、的值,即可得出點的坐標.【詳解】設點的坐標為,,,,,則,,,平面,即,所以,,解得,所以,點的坐標為,故選:A.2、B【解析】利用組合數(shù)計算出正確答案.【詳解】甲乙兩類課程都有選擇的不同選法種數(shù)為.故選:B3、D【解析】由等比中項轉化得,可得,求解基本量,由等比數(shù)列通項公式即得解【詳解】設公比為,則由,得,即故,解得故選:D4、A【解析】用點差法即可獲解【詳解】設.則兩式相減得即因為,線段AB的中點為,所以所以所以直線的方程為,即故選:A5、D【解析】先由圓的方程得出兩圓的圓心坐標和半徑,求出兩圓心間的距離與兩半徑之和與差比較可得答案.【詳解】圓的圓心為,半徑為圓的圓心為,半徑為兩圓心間的距離為由,所以兩圓相交.故選:D6、B【解析】將代數(shù)式展開,然后利用基本不等式可求出該代數(shù)式的最小值.【詳解】,,由基本不等式得,當且僅當時,等號成立.因此,的最小值為.故選B.【點睛】本題考查利用基本不等式求最值,在利用基本不等式時要注意“一正、二定、三相等”條件的成立,考查計算能力,屬于中等題.7、D【解析】根據(jù)題意把直線與側面所成角的正切值轉化為在直角三角形中的正切值,即可求出答案.【詳解】由題意可知直四棱柱如下圖所示:取的中點設為點,連接,在直四棱柱中,面,面,,在四邊形中,,,故且.面,面,面,.故直線與側面所成角的正切值為.故選:D.8、A【解析】根據(jù)等差數(shù)列的公差,求得其通項公式求解.【詳解】因為等差數(shù)列的公差,所以,則,所以,由,得,所以或12時,該數(shù)列的前項和取得最大值,最大值為,故選:A9、A【解析】首先構造函數(shù),再利用導數(shù)判斷函數(shù)的單調(diào)性,即可判斷選項.【詳解】設,,所以函數(shù)在單調(diào)遞增,即,所以,那么,即.故選:A10、C【解析】根據(jù)題意求出P點坐標,代入橢圓方程中,可整理得到關于a,c的等式,進一步整理為關于e的方程,解得答案.【詳解】如圖示:由題意可知,因為四邊形是菱形,所以,則,所以P點坐標為,將P點坐標為代入得:,整理得,故,由于,解得,所以,故選:C.11、C【解析】根據(jù)三角恒等變換結合正弦定理化簡求得,即可判定三角形形狀.【詳解】解:由題,得,即,由正弦定理可得:,所以,所以三角形中,所以,又,所以,即三角形為直角三角形.故選:C.12、C【解析】根據(jù)目標式,結合導數(shù)的定義即可得結果.【詳解】.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】求出等比數(shù)列的通項公式,可得出的通項公式,推導出數(shù)列為等差數(shù)列,利用等差數(shù)列的求和公式即可得解.【詳解】設等比數(shù)列的公比為,則,則,所以,,則,所以,數(shù)列為等差數(shù)列,故數(shù)列的前項和為.故答案為:.14、【解析】構造函數(shù)g(x)=f(x)-2x-1,則原不等式可化為.利用導數(shù)判斷出g(x)在R上為減函數(shù),直接利用單調(diào)性解不等式即可【詳解】令g(x)=f(x)-2x-1,則g(1)=f(1)-2-1=0.所以原不等式可化為.因為,所以g(x)在R上為減函數(shù).由解得:x>1.故答案為:.15、【解析】若Q到的距離為有,由題設有,結合雙曲線離心率的性質(zhì),即可求離心率的范圍.【詳解】由題意,,即,整理有,所以或,若Q到的距離為,則Q到左、右焦點的距離分別為、,又Q在C的右支上,所以,則,又,綜上,雙曲線的離心率的取值范圍是.故答案為:【點睛】關鍵點點睛:若Q到的距離為,根據(jù)給定性質(zhì)有Q到左、右焦點的距離分別為、,再由雙曲線性質(zhì)及已知條件列不等式組求離心率范圍.16、【解析】將變形為,令,,分別研究其單調(diào)性及值域,使問題轉化為即可.【詳解】由題,,令,則,由,得,由,得,所以在遞減,在遞增,所以,令,則,由,得,由,得,所以在遞增,在遞減,所以,若存在實數(shù)使得成立,即存在實數(shù)使得成立,即存在實數(shù)使得恒成立所以,即,解得,所以取值范圍為.故答案為:【點睛】關鍵點點睛:本題解題關鍵是將所求問題轉為存在實數(shù)使得恒成立,結合的值域進一步轉化為存在實數(shù)使得恒成立,再只需即可.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)存在,【解析】(1)利用拋物線的焦半徑公式求得點的橫坐標,進而求得p,可得答案;(2)根據(jù)題意可設直線方程,和拋物線方程聯(lián)立,得到根與系數(shù)的關系式,利用直線與的斜率互為倒數(shù)列出等式,化簡可得結論.【小問1詳解】(1)則,,,,故C的方程為:;【小問2詳解】假設存在定點,使得直線與的斜率互為倒數(shù),由題意可知,直線AB的斜率存在,且不為零,,,,,所以Δ>0y1+即或,,,則,,使得直線與的斜率互為倒數(shù).18、(1)證明見解析(2)【解析】(1)連接,使,連接,即可得到,從而得證;(2)設,以為坐標原點建立空間直角坐標系,求出平面的法向量,平面的法向量,利用空間向量的數(shù)量積求解面與面的夾角余弦值為,從而得到方程,解得即可【小問1詳解】證明:如圖,連,使,連,由直三棱柱,所以四邊形為矩形,所以為中點,在中,、分別為和中點,,又因平面平面,面,面,平面【小問2詳解】解:設,以為坐標原點如圖建系,則,,所以、,設平面的法向量則,故可取設平面的法向量,則,故可取,因為面與面的夾角余弦值為,所以,即,解得,19、(1);(2)存在,理由見解析.【解析】(1)根據(jù)題意用定義法求解軌跡方程;(2)在第一問的基礎上,設出直線l的方程,聯(lián)立橢圓方程,用韋達定理表達出兩根之和,兩根之積,求出直線l的垂直平分線,從而得到D點坐標,證明出結論.【小問1詳解】由題意得:,所以,,而,故動點P的軌跡E的方程為以點、為焦點的橢圓方程,由得:,,所以動點P的軌跡E的方程為;【小問2詳解】存,理由如下:顯然,直線l的斜率存在,設為,聯(lián)立橢圓方程得:,設,,則,,要想以DA、DB為鄰邊的平行四邊形為菱形,則點D為AB垂直平分線上一點,其中,,則,故AB的中點坐標為,則AB的垂直平分線為:,令得:,且無論為何值,,點D在線段上,滿足題意.20、(1)(2)【解析】(1)化簡命題p,將m=3代入求出命題q,再根據(jù)或、且連接的命題真假確定p,q真假即可得解;(2)由給定條件可得p是q的必要不充分條件,再列式計算作答.【小問1詳解】依題意,:,:,得:.當時,:,因為真命題,為假命題,則與一真一假,當真假時,即或,無解,當假真時,即或,解得或,綜上得:或,所以實數(shù)x的取值范圍是;【小問2詳解】因是的充分不必要條件,則p是q的必要不充分條件,于是得,解得,所以實數(shù)m的取值范圍是21、(1)2;(2)存在,.【解析】(1)對函數(shù)求導,利用得的值;(2)討論和分離參數(shù),構造新函數(shù)求解最值即可求解【詳解】解:(1),又由題意有(2)由(1)知,此時,由或,所以函數(shù)的單調(diào)減區(qū)間為和要恒成立,即①當時,,則要恒成立,令,再令,所以在內(nèi)遞減,所以當時,,故,所以在內(nèi)遞增,;②當時,lnx>0,則要恒成立,由①可知,當時,,所以內(nèi)遞增,所以當時,,故,所以在內(nèi)遞增,綜合①②可得,即存在常數(shù)滿足題意22、(1)(2)【解析】
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度山西省高校教師資格證之高等教育法規(guī)真題練習試卷B卷附答案
- 2024年大、中容量數(shù)字程控交換機項目資金需求報告代可行性研究報告
- 2024年機械治療及病房護理設備項目資金申請報告代可行性研究報告
- 幼兒園校舍安全排查自查報告范文
- 2024年產(chǎn)品保修服務協(xié)議文本
- 2024年專用液化氣運輸服務協(xié)議范本
- 2024年建筑效果設計方案協(xié)議模板
- 2024年二手車銷售協(xié)議:全面細化
- 倉庫租賃與承包協(xié)議范本2024年適用
- 出口業(yè)務協(xié)議樣式2024年專業(yè)
- 2024年醫(yī)院招聘護士考試試題及參考答案
- 2024年永州職業(yè)技術學院單招職業(yè)技能測試題庫及答案解析
- 注射相關感染預防與控制(全文)
- 《紅星照耀中國》閱讀推進課教學設計-2023-2024學年統(tǒng)編版語文八年級上冊
- TSG+11-2020鍋爐安全技術規(guī)程
- NB-T31030-2012陸地和海上風電場工程地質(zhì)勘察規(guī)范
- 國開(黑龍江)2024年《網(wǎng)絡行為分析》終結性考核答案
- 江蘇省常州市天寧區(qū)2023-2024學年五年級下學期一二單元語文試卷
- 學生自主管理委員會常規(guī)檢查登記表(定)
- DL-T5142-2012火力發(fā)電廠除灰設計技術規(guī)程
- 江蘇省南京市鼓樓區(qū)+2023-2024學年九年級上學期期中物理試題(有答案)
評論
0/150
提交評論