歐洲央行-貨幣政策與風(fēng)險增長:制度質(zhì)量的作用 Monetary policy and growth-at-risk the role of institutional quality_第1頁
歐洲央行-貨幣政策與風(fēng)險增長:制度質(zhì)量的作用 Monetary policy and growth-at-risk the role of institutional quality_第2頁
歐洲央行-貨幣政策與風(fēng)險增長:制度質(zhì)量的作用 Monetary policy and growth-at-risk the role of institutional quality_第3頁
歐洲央行-貨幣政策與風(fēng)險增長:制度質(zhì)量的作用 Monetary policy and growth-at-risk the role of institutional quality_第4頁
歐洲央行-貨幣政策與風(fēng)險增長:制度質(zhì)量的作用 Monetary policy and growth-at-risk the role of institutional quality_第5頁
已閱讀5頁,還剩55頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

EUROPEANCENTRALBANK

EUROSYSTEM

LorenzEmter,AfonsoS.Moura,RalphSetzer,NicoZorell

WorkingPaperSeries

Monetarypolicyandgrowth-at-risk:theroleofinstitutionalquality

No2989

Disclaimer:ThispapershouldnotbereportedasrepresentingtheviewsoftheEuropeanCentralBank(ECB).TheviewsexpressedarethoseoftheauthorsanddonotnecessarilyreflectthoseoftheECB.

ECBWorkingPaperSeriesNo29891

Abstract

Thispaperanalyseshowcountry-speci?cinstitutionalqualityshapestheimpactofmon-

etarypolicyondownsideriskstoGDPgrowthintheeuroarea.Usingidenti?edhigh-frequencyshocksinagrowth-at-riskframework,weshowthatmonetarypolicyhasahigherimpactondownsiderisksintheshorttermthaninthemediumterm.However,thisresultfortheeuroareaaveragehidessigni?cantheterogeneityacrosscountries.Ineconomieswithweakinstitutionalquality,medium-termgrowthrisksincreasesubstan-tiallyfollowingcontractionarymonetarypolicyshocks.Incontrast,theserisksremainrelativelystableincountrieswithhighinstitutionalquality.Thissuggeststhatimprove-mentsininstitutionalqualitycouldsigni?cantlyenhanceeuroareacountries’economicresilienceandsupportthesmoothtransmissionofmonetarypolicy.

Keywords:Euroarea,growth-at-risk,institutionalquality,monetarypolicytransmissionJELClassi?cation:C23,E52,F45,G28,O43

ECBWorkingPaperSeriesNo29892

Non-technicalsummary

25yearsaftertheintroductionoftheeuro,theeuroareacountriesarestillheterogeneousintermsofeconomicstructures.Thisisparticularlyevidentinstandardindicatorsofinstitu-tionalquality,suchastheWorldBank’sWorldGovernanceIndicators.Whilesomeeuroareacountriesareclosetotheglobalfrontier,othersarelagging.

Itiswidelyrecognisedthatcross-countrydifferencesininstitutionsandothereconomicstructureshaveimportantimplicationsforthetransmissionoftheECB’smonetarypolicy.Inparticular,structuralheterogeneitycancontributetocross-countrydifferencesintheresponsesofoutputandin?ationtomonetarypolicychanges.This,inturn,maycontributetorealornominaldivergences,makingitlesslikelythatthecommonmonetarypolicyisalignedwitheconomicconditionsineachindividualeuroareacountry.

Inthispaper,weexploreifdifferencesininstitutionalqualityacrosseuroareacountriesalsomatterfortailrisksintheaftermathofmonetarypolicyshocks.Whenpolicymakersconsidertheimpactofmonetarypolicychangesonfutureeconomicactivity,theytypicallyfocusonthemostlikelyscenario,i.e.themeanofthe(conditional)distributionoffutureGDPgrowth.However,centralbanksalsoincreasinglyanalysetherisksaroundthecentralprojectioninquantitativeterms.Againstthisbackdrop,ourpaperaimstoshedlightontheroleofinstitutionalfactorsinshapingdownsideriskstoGDPgrowthintheaftermathofmonetarypolicyshocksinaheterogeneousmonetaryunion.

Weusethegrowth-at-riskframeworkproposedby

Adrian,BoyarchenkoandGiannone

(2019)toestimatedownsideriskstofutureGDPgrowthwithpanelquantileregressions

.Inlinewiththeliterature,wede?negrowth-at-riskasthelowestdecileofthedistributionofpredictedGDPgrowth.Toestimatetheimpactofmonetarypolicyshocksongrowth-at-risk,wefollowthemethodproposedby

Loria,MatthesandZhang

(2024)

.Wesplitoursampleintoeuroareacountrieswithhigherandlowerinstitutionalquality,respectively,asmeasuredbytheWorldGovernanceIndicators.

We?ndthatmonetarypolicyhasahigherimpactondownsideriskstoGDPgrowthintheshorttermthaninthemediumterm.However,thishidessigni?cantheterogeneityacrosscountries.Ineconomieswithweakinstitutionalquality,medium-termgrowthrisksincreasesubstantiallyfollowingcontractionarymonetarypolicyshocks.Incontrast,theserisksremainrelativelystableincountrieswithhighinstitutionalquality.Interestingly,expansionarymon-etarypolicyshockshaveamilderandmoresymmetricimpactthancontractionaryshocks,bothacrosscountriesandquantilesoftheconditionalgrowthdistribution.Wheninspectingthetransmissionchannels,we?ndthatmedium-termrisksincreasethroughtheimpactofmonetarypolicyshocksonmacro-?nancialvulnerabilities,inparticularincountrieswithlowinstitutionalquality.

Theseresultshaveimportantpolicyimplications.First,ourempirical?ndingssuggestthatimprovinginstitutionalqualitycanstrengthentheeconomicresilienceofeuroareacoun-tries.Insofar,wecomplementexistingstudiesthatemphasisetheroleofbankcapitalisation,macroprudentialmeasuresormonetarypolicyinstrumentsinsteeringgrowth-at-risk.Sec-ond,our?ndingsindicatethatupwardinstitutionalconvergencewouldsupportthesmooth

ECBWorkingPaperSeriesNo29893

transmissionofmonetarypolicyintheeuroareabyensuringalesspronouncedandmorehomogeneousresponseofmedium-termgrowth-at-risktomonetarypolicytightening.

ECBWorkingPaperSeriesNo29894

1Introduction

25yearsaftertheintroductionoftheeuro,theeuroareacountriesarestillheterogeneousintermsofeconomicstructures.Thisisparticularlyevidentinstandardindicatorsofinsti-tutionalquality,suchastheWorldBank’sWorldGovernanceIndicators(WGI).Whilesomeeuroareacountriesareclosetotheglobalfrontier,othersarelagging.

Itiswidelyrecognisedthatcross-countrydifferencesininstitutionsandothereconomicstructureshaveimportantimplicationsforthetransmissionoftheECB’smonetarypolicy.Inparticular,structuralheterogeneitycancontributetocross-countrydifferencesinthere-sponsesofoutputandin?ationtomonetarypolicydecisions(

Barigozzi,ContiandLuciani,

2014;

Ciccarelli,MaddaloniandPeydró,

2013;

Corsetti,DuarteandMann,

2022;

Slacalek,Tris-

taniandViolante,

2020

)

.1

Forinstance,economieswithstronginstitutionalqualityarelikelytobelessdependentonshort-term?nancialin?owsfromabroadandmaythereforebelessvulnerabletotightening?nancialconditionsthancountrieswithweakerinstitutionalback-grounds.Suchcross-countryheterogeneitymaycontributetorealornominaldivergences,makingitlesslikelythatthecommonmonetarypolicyisalignedwitheconomicconditionsineachindividualeuroareacountry.

Inthispaper,weexploreifdifferencesininstitutionalqualityacrosseuroareacountriesalsomatterfortailrisksintheaftermathofmonetarypolicyshocks.Whenpolicymakersconsidertheimpactofmonetarypolicychangesonfutureeconomicactivity,theytypicallyfocusonthemostlikelyscenario,i.e.themeanofthe(conditional)distributionoffutureGDPgrowth.However,centralbanksalsoincreasinglyanalysetherisksaroundthecentralprojectioninquantitativeterms.Againstthisbackdrop,ourpaperaimstoshedlightontheroleofinstitutionalfactorsinshapingdownsideriskstoGDPgrowthintheaftermathofmonetarypolicyshocksinaheterogeneousmonetaryunion.

TocapturedownsideriskstofutureGDPgrowth,weusethegrowth-at-risk(GaR)frame-workproposedby

Adrian,BoyarchenkoandGiannone

(2019)

.Inlinewiththeliterature(see,e.g.,

FigueresandJaroci′nski

(2020)and

G?chter,GeigerandHasler

(2023)),wede?neGaRas

thelowestdecileofthedistributionofpredictedGDPgrowth,foragiventimehorizon,con-ditionalonasetofcurrenteconomicand?nancialconditions.OurGaRmeasureisderivedfromapanelquantileregression,usingtheestimatordevelopedby

MachadoandSantosSilva

(2019)

.Thesamplecoversall20euroareacountriesovertheperiod1999Q1-2019Q4.

Inasecondstep,weestimatethecausalimpactofmonetarypolicyshocksonGaRfol-lowingthemethodproposedby

Loria,MatthesandZhang

(2024)

.2

Monetarypolicyshocksareconstructedbasedonhigh-frequencymovementsinassetpricesaroundECBpolicyan-nouncementsandcleanedfromcentralbankinformationeffects(

Gürkaynak,SackandSwan-

1Takingabroaderperspective,Sondermann(2018)showsthattheoutputlosssufferedbyeuroareacountries

withweakereconomicstructuresinresponsetoacommonshock(notnecessarilyamonetarypolicyshock)ison

averagetwiceaslargeastheoutputlossofthebestperformers.

2WhiletheGaRliteraturetypicallydoesnotidentifythecausalimpactofstructuralshocksonGaR,Loria,

MatthesandZhang(2024)showthatcontractionaryUSmonetarypolicyshocksareamongthestructuralshocks

whichdisproportionatelyincreasetheriskoflargedownturnsintheUnitedStates.Beuteletal.(2022)showthat

theseshockscauseelevateddownsideriskstogrowtharoundtheworld.Wefollowthisapproachandestablish

causalitybetweenmonetarypolicyshocksandGaRintheeuroarea.

ECBWorkingPaperSeriesNo29895

son

(2005);

Altavillaetal.

(2019);

Jaroci′nskiandKaradi

(2020))

.WeusetheWorldBank’sWGIdata(

KaufmannandKraay,

2023)tosplitthesampleintoeuroareacountrieswithweakerand

strongerinstitutionalquality,respectively.ThisallowsustostudydifferencesintheimpulseresponsesofGaRtomonetarypolicyshocksbetweenthesetwocountrygroups.

We?ndthatmonetarypolicyhasahigherimpactondownsideriskstoGDPgrowthintheshorttermthaninthemediumterm.However,thisaggregateresulthidessigni?canthetero-geneityacrosscountries.Ineconomieswithweakinstitutionalquality,medium-termgrowthrisksincreasesubstantiallyfollowingcontractionarymonetarypolicyshocks.Incontrast,theserisksremainrelativelystableincountrieswithhighinstitutionalquality.Interestingly,expansionarymonetarypolicyshockshaveamoresymmetricimpactthancontractionaryshocks,bothacrosscountriesandquantilesoftheconditionalgrowthdistribution.

Inspectingthetransmissionchannels,we?ndthatmedium-termrisksincreasethroughtheimpactthatmonetarypolicyshockshaveonvariablescapturingmacro-?nancialvulner-abilities—andthischannelismuchmorepronouncedforcountrieswithlowinstitutionalquality.Ourmainresultsarerobustto(i)usingdifferentindicatorscapturingmedium-termriskstoGDPgrowthwhenestimatingGaR,(ii)employingdifferentindicatorsofinstitutionalquality,(iii)accountingforcross-countrydifferencesinincomelevelsand(iv)alteringeitherthecountriesorthetimeperiodcoveredinthesample.

Ourresultshaveimportantpolicyimplications.First,ourempirical?ndingssuggestthatimprovinginstitutionalqualitycanstrengthentheeconomicresilienceofeuroareacountries.Insofar,wecomplementexistingstudiesthatemphasisetheroleofbankcapitalisation(

Aik-

manetal.,

2021),macroprudentialmeasuresormonetarypolicyinstruments(Galán,

2024)

insteeringGaR.Second,our?ndingsindicatethatinstitutionalconvergencewouldsupportthesmoothtransmissionofmonetarypolicybyensuringamorehomogeneousresponseofthetailofthemedium-termgrowthdistributiontomonetarypolicytightening.Thisaddsanimportantdimensiontothediscussionof?nancialstabilityconsiderationsintheconductofmonetarypolicy(

Bochmannetal.,

2023

).

Theremainderofthepaperisstructuredasfollows.Section

2

outlinesthemethodologyemployedtoestimateGaRandpresentstheresultingestimates.InSection

3

,wecomputeimpulseresponsesoftheGaRmeasurestomonetarypolicyshocksandexploretheroleofinstitutionalqualityinexplainingthecross-countryheterogeneityintheseimpulseresponses.Section

4

providesanoverviewofourrobustnesschecksandSection

5

concludes.

2Growth-at-riskandmacro-?nancialvulnerabilities

WestartouranalysisbyestimatingGaRoverdifferenttimehorizonsinasampleofeuroareacountries.Thisexerciseillustratestherelativeimportanceofdifferentmacro-?nancialvariablesfordownsideriskstogrowth,dependingonthetimehorizonconsidered.Weshowthatshort-termGaRestimatesforeuroareacountriesaremostlyassociatedwith?nancialstressindicators,whilemedium-termriskstogrowtharenotstronglycorrelatedwithcurrent?nancialstress.Instead,onlymacrovulnerabilitiesmatterformedium-termGaR.Our?nd-ingsthuspointtotwodifferentchannelsthroughwhichdownsideriskstoGDPgrowthmay

ECBWorkingPaperSeriesNo29896

materialise.

Buildingonour?rst-stageregression,Section

3

willexploretheroleofinstitutionalqualityindeterminingtheresponseofGaRtomonetarypolicyshocks.Thistwo-stepapproach,asfurtherexplainedinmoredetailinSection

3

,enablesustofocusontheeffectsofmonetarypolicythataretransmittedviatheconditioningvariablesinour?rst-stageregression.ThemethodologytherebyallowsustoidentifythechannelsthroughwhichinstitutionalfactorsshapetheimpactofmonetarypolicyonGaR.

2.1Methodologyanddata

Following

Adrianetal.

(2022),weestimatepanelquantileregressionsmakinguseoflocal

projectionmethods(

Jordà,

2005)sothatweareabletoestimatetheconditionalforecastof

GDPgrowthbothfortheshortterm(de?nedas4quartersahead)andthemediumandlongerterm(8and12quartersahead,respectively).Toestimateourmodel,wefollow

Machadoand

SantosSilva

(2019)whoderiveanestimatorofconditionalquantilesfromthecombinationof

alocationandascalefunction,whichisparticularlyusefulinapanelsettingwithcountry?xedeffects

.3

Following

MachadoandSantosSilva

(2019),theconditionalpredicteddistributionoffu

-tureGDPgrowth,foragivenquantileofDyi,t+h,willbegivenby

q,t,τ=(Dyi,t+hjxi,t)=i,τ+xi,t,τ∈(0,1).(1)

Inlinewithpreviousstudies(see,e.g.,

FigueresandJaroci′nski

(2020)and

G?chter,Geiger

andHasler

(2023)),weconsiderthe10thpercentileofpredictedGDPgrowthtobeourGaR

measure.Wede?neDyit+hastheannualisedaveragegrowthrateofGDPbetweenquarterst

andt+h:Dyi,t+h=

Thevariablesincludedinxi,treferto?nancialstressindicatorsandmacro-?nancialvulner-abilities,whichhavebeenshowntocontainthemostrelevantinformationformedium-termGaRintheeuroarea(

Lang,RusnákandGreiwe,

2023)

.FinancialstressiscapturedbytheCountryLevelIndexofFinancialStress(CLIFS),introducedby

Duprey,KlausandPeltonen

(2017)basedon

Hollo,KremerandLoDuca

(2012)

.TheCLIFScoversmeasuresofstressinequity,bondandforeignexchangemarketsandtakesco-movementsinthesemarketsegmentsintoaccount.Turningtoindicatorsofmacro-?nancialvulnerabilities,andascommonintheGaRliterature,weincludeameasureofexcessivecreditgrowthoverthepasttwoyears.ForthatwerelyontheBIScredit-to-GDPgapandcalculateitscumulativedeviationoverthepre-vious8quartersfromitslong-runtrend.BoththeCLIFSandthecumulativedeviationfromthetrendofthecredit-to-GDPgaparestandardisedbytheircountry-speci?cstandarddevia-tions.Wealsoincludethegrowthrateinhousepricesoverthepast8quarters.Inaddition,tocapturebothpublicandexternalsectorvulnerabilitiesweincludethecyclically-adjustedbud-

3Thisapproachallowsthecountry?xedeffectstovaryacrossquantiles,suchthatαi,τ三αi+δiq(τ).Thiscontrasts,forexample,withthemethodproposedby

Canay

(2011)whichrestrictscountry?xedeffectstobe

invariantacrossquantiles.

4ForIreland,weusethemodi?eddomesticdemandindicatorreleasedbythenationalstatisticalauthority.ComparedtoGDP,itislessaffectedbydatadistortionsarisingfromtheactivitiesofmultinationalenterprises.

ECBWorkingPaperSeriesNo29897

getbalanceandtheseasonally-adjustedcurrentaccountbalance.Finally,theeffectofoverallcurrenteconomicconditionsonfuturedownsiderisksiscapturedbyincludingeachcountry’sGDPasacontrolvariable,asiscommonintheliterature.

Oursamplecoversalleuroareacountriesinthetimeperiodfrom1999Q1to2019Q4,al-thoughsomevariablesarenotavailableforthefullobservationperiod

.5

GDPgrowthratesarehighlyleft-skewedduringthisperiodacrosscountriesasshowninAppendix

A.1.

Moreover,theunconditionallowerpercentilesofGDPgrowthshowsubstantialheterogeneityacrosscountries,muchmoresothanthemedianoftheunconditionalGDPgrowthdistribution(Fig-ure

8

).Inotherwords,someeuroareacountriesappeartobemoresusceptibletoweakgrowthoutcomesthanothers.Thisisdespitethefactthattheeuroareacountrieshavebeensubjecttoanumberofcommonshocksoverthisperiod.Thecross-countryheterogeneitythussuggestsaroleforcountrycharacteristicsinexacerbatingdownsideriskstogrowth.

2.2GaRestimates

WestartdocumentingourresultsbyshowingGaRestimatesfordifferenttimehorizons,to-getherwiththetimeseriesoftheircross-countryaverages

.6

Figure

1

suggeststhat,inlinewith

Adrian,BoyarchenkoandGiannone

(2019)and

Adrianetal.

(2022),thepredictedlower

tailofthegrowthdistributionismuchmorevolatilethanhigherquantiles

.7

Thismeansthatdownsideriskstogrowthvarymuchmoreovertimethanupsiderisks.Ourframeworkalsoappearstogiveanearlypredictionofthedownturnsandtroughsoftheglobal?nancialcri-sisin2008.Althoughthe4-quarter-aheadGaRmeasuredoesabetterjobinthisregard(seeAppendix

A.3

),itisstillinterestingthatthemedium-termmodelcansignaltheincreasingprobabilityofadownturnaroundtwoyearsbeforeitmaterialised.

Table

1

presentstheestimatedcoef?cientsforthequantileregression,fordifferenttimehorizons

.8

Asnotedabove,ourpreferredmeasureofGaRisthe10thpercentileofpredictedGDPgrowth.Thereisastrongassociationbetween?nancialconditionsandshort-termriskstogrowth.Atighteningof?nancialconditions,re?ectedinanincreaseintheCLIFS,isasigni?cantpredictoroflargemacroeconomicdownturnsoverafour-quarterhorizon.Thein-formationcontentof?nancialstressregardingriskstogrowthdecreasesoverlongerhorizons(eightandtwelvequarters)re?ectingthefactthat?nancialconditionsmayremainbuoyantuntilshortlybeforerisksmaterialise(

IMF,

2017

).Incontrast,incorporatinginformationonthecredit-to-GDPgapdoesnotaddexplanatorypowertoGaRintheshorttermbuthelpstocaptureriskstogrowthoverthemedium-andlonger-term(eightandtwelvequarters).Strongrisesinhouseprices,negativebudgetbalancesandnegativecurrentaccountbalancesalsosignalheightenedtailriskstogrowth,especiallyoverthelongerterm(or,atleast,insim-ilarmagnitudesforshorterandlongerhorizons,asopposedtoCLIFS).These?ndingsonthe

5InAppendix

A.4.2

weshowthatthecoef?cientsdonotsigni?cantlychangeifweextendthesampletoincludetheCOVID-19periodandthesubsequentyears.

6SeethefootnoteofFigure

1

foranexplanationofhowweobtainthisseries.

7Sinceweareinterestedincross-countryheterogeneityandtheroleofinstitutionalcharacteristicsinthetransmissionofmonetarypolicy,wefocusonmedium-termGaR.Figure

1

showsthecross-countryaverageof8-quarter-aheadGaR.InAppendix

A.3

weshowthesame?gureforothertimehorizons.

8Inappendix

A.4

weshowthatthesecoef?cientsareverysimilaracrossasetofdifferentspeci?cations.Additionally,inappendix

A.2

weshowthecoef?cientsforotherquantilesofthedistribution.

ECBWorkingPaperSeriesNo29898

Figure1:Predicted10thpercentile(GaR),medianand90thpercentileof8-quarter-aheadGDPgrowthandrealisedGDPgrowth

%

8

6

4

2

0

-2

-4

-6

-8

-10

-12

10thQuantile50thQuantile90thQuantileRealized

Mean

SD

10thperc.(GaR)-1.081.54Median1.770.88

90thperc.3.900.50

Realized1.932.48

2000q12005q12010q12015q12020q1

Quarter

Notes:Thepredicted8-quarter-ahead10thpercentile,medianand90thpercentileoftheannualisedaveragegrowthrateofGDParethecross-countryaveragesofeachcountryprediction(countryspeci?cpredictionsareobtainedwiththeestimatesofthepanelmodelofequation

1)

.Onceaveragedbyquarter,theseseriesareshiftedforwardby8quarterssuchthatthetimingofthepredictedgrowthrateandtherealisedoneforagivenquartermatch.

termstructureofGaRareinlinewithprevious?ndingsintheliterature,suchas

Adrianetal.

(2022)andinparticular

Lang,RusnákandGreiwe

(2023)whoshowthatonlymacro-?nancial

vulnerabilityindicatorsre?ectingcreditandassetpriceimbalancescontaininformationaboutmedium-termGaRintheeuroarea.Therefore,weinterpretthis?ndingasevidenceoftwokeychannelsbehindshort-termandmedium-termGaR:ashort-termchannelconnectedwith?nancialstressandamedium-termchannellinkedtomacro-?nancialvulnerabilities.

Itisalsointerestingtoanalysethetimevariationinthecontributionstodownsiderisksfromeachexplanatoryvariable.Figure

2

presentsthecontributionstoGaRfordifferenthori-zons.Figure

2a

illustratesthatweak?nancialandeconomicconditionsmakethelargestcontributiontodownsiderisksintheshort-term.Thereisasigni?cantcontributionofCLIFSaroundtheglobal?nancialcrisis,asonewouldexpect.However,Figure

2b

showsthatmacroe-conomicvulnerabilitiesweighstronglyonthepredictionofGaRoverlongerhorizons.Inpar-ticular,weakpublic?nancescontributedstronglytothelower10thpercentileofconditionalgrowtharoundthesovereigndebtcrisis.Figure

2c

con?rmstheimportanceofmacro-?nancialvulnerabilitiesforGaRinthelongertermalsooverahorizonof12quarters.Atthesametime,thecontributionof?nancialstresstolonger-termriskstogrowthisnegligible.

ECBWorkingPaperSeriesNo29899

Figure2:AveragecontributionstoGaRforecast,h=4,h=8andh=12quartersahead

PercentagePoints

2

0

-2

-4

-6

-8

2000q12005q12010q12015q12020q1

(a)h=4

PercentagePoints

2

0

-2

-4

2005q1

2000q1

2010q1

2015q1

2020q1

(b)h=8

PercentagePoints

2

0

-2

-4

2000q1

2005q1

2010q1

2015q1

2020q1

二GDP

二CurrentAccount

Credit-to-GDPGapHousePrices

GaR

二CLIFS

BudgetBalance

(c)h=12

Notes:GaRreferstothe10thpercentileofpredictedGDPgrowth.ThepredictedGaRmeasuresplottedarethecross-countryaveragesoftheindividualcountrypredictions(thatwereobtainedusingmodel

1

),netofthecountry?xedeffectandthecoef?cientofthedummyforwhenthecountryadoptedtheeuro.

ECBWorkingPaperSeriesNo298910

Table1:Quantileregressioncoef?cientsfordifferenthorizonsofGaR

h=4

h=8

h=12

CLIFS

-0.780***

-0.331

-0.176*

(0.339)

(0.429)

(0.136)

GDP

0.318***

0.049

-0.004

(0.158)

(0.195)

(0.054)

Credit-to-GDPGap

-0.255

-0.525*

-0.435***

(0.316)

(0.497)

(0.164)

HousePrices

-0.040*

-0.039

-0.031***

(0.035)

(0.050)

(0.015)

BudgetBalance

0.441***

0.438**

0.314***

(0.175)

(0.262)

(0.088)

CurrentAccount

0.279***

0.228*

0.247***

(0.094)

(0.142)

(0.048)

Observations

1179

1103

1027

Notes:GaRreferstothe10thpercentileofpredictedGDPgrowth.Standarderrorsinparenthesis.Quantileregressionwithcountry?xedeffectsandcontrollingforthetimingofeuroadoption.Starsindicatesigni?canceat*p<0.32,**p<0.10,***p<0.05.

3Impactofmonetarypolicyshocksongrowth-at-risk

ThissectionlooksattheimpactofmonetarypolicyshocksonGaRinaheterogeneousmon-etaryunion.Morespeci?cally,weanalysetheextenttowhichcross-countrydifferencesininstitutionalqualityaffecttheresponseofGaRtoamonetarypolicyshockintheeuroarea.Indoingso,wetrytodisentangletherelevanceof?nancialconditionsandmacroeconomicvulnerabilities,respectively,astransmissionchannels.Inaddition,weexplorepossiblenon-linearitiesinthesetransmissionchannelsdependingonwhetherthemonetarypolicyshockiscontractionaryorexpansionary.

3.1Methodologyanddata

Following

Loria,MatthesandZhang

(2024),weassesstheresponseoftheGaRvaluespre

-

dictedinthe?rst-stageregression(seeSection

2.1

)tomonetarypolicyshocks.De?ningq,t+s,τ

as

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論