版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2024屆浙江省余姚市余姚中學第二學期期末學業(yè)質量陽光指標調(diào)研卷高三數(shù)學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.偶函數(shù)關于點對稱,當時,,求()A. B. C. D.2.執(zhí)行如圖所示的程序框圖,輸出的結果為()A. B.4 C. D.3.已知三棱錐且平面,其外接球體積為()A. B. C. D.4.設,,,則的大小關系是()A. B. C. D.5.已知的展開式中第項與第項的二項式系數(shù)相等,則奇數(shù)項的二項式系數(shù)和為().A. B. C. D.6.雙曲線﹣y2=1的漸近線方程是()A.x±2y=0 B.2x±y=0 C.4x±y=0 D.x±4y=07.已知數(shù)列為等差數(shù)列,為其前項和,,則()A.7 B.14 C.28 D.848.函數(shù)的定義域為()A. B. C. D.9.數(shù)列滿足,且,,則()A. B.9 C. D.710.若函數(shù)的圖象如圖所示,則的解析式可能是()A. B. C. D.11.中國古典樂器一般按“八音”分類.這是我國最早按樂器的制造材料來對樂器進行分類的方法,最先見于《周禮·春官·大師》,分為“金、石、土、革、絲、木、匏(páo)、竹”八音,其中“金、石、木、革”為打擊樂器,“土、匏、竹”為吹奏樂器,“絲”為彈撥樂器.現(xiàn)從“八音”中任取不同的“兩音”,則含有打擊樂器的概率為()A. B. C. D.12.函數(shù)在上的圖象大致為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某幾何體的三視圖如圖所示(單位:cm),則該幾何體的表面積是______cm2,體積是_____14.在中,角所對的邊分別為,為的面積,若,,則的形狀為__________,的大小為__________.15.若復數(shù)z滿足,其中i是虛數(shù)單位,則z的模是______.16.下圖是一個算法流程圖,則輸出的的值為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標系xOy中,直線的參數(shù)方程為(t為參數(shù),).以坐標原點為極點,x軸的非負半軸為極軸,建立極坐標系,曲線C的極坐標方程為.(l)求直線的普通方程和曲線C的直角坐標方程:(2)若直線與曲線C相交于A,B兩點,且.求直線的方程.18.(12分)已知數(shù)列為公差為d的等差數(shù)列,,,且,,依次成等比數(shù)列,.(1)求數(shù)列的前n項和;(2)若,求數(shù)列的前n項和為.19.(12分)如圖,在多面體中,四邊形是菱形,,,,平面,,,是的中點.(Ⅰ)求證:平面平面;(ⅠⅠ)求直線與平面所成的角的正弦值.20.(12分)已知中,,,是上一點.(1)若,求的長;(2)若,,求的值.21.(12分)某市環(huán)保部門對該市市民進行了一次垃圾分類知識的網(wǎng)絡問卷調(diào)查,每位市民僅有一次參加機會,通過隨機抽樣,得到參與問卷調(diào)查的100人的得分(滿分:100分)數(shù)據(jù),統(tǒng)計結果如表所示:組別男235151812女051010713(1)若規(guī)定問卷得分不低于70分的市民稱為“環(huán)保關注者”,請完成答題卡中的列聯(lián)表,并判斷能否在犯錯誤概率不超過0.05的前提下,認為是否為“環(huán)保關注者”與性別有關?(2)若問卷得分不低于80分的人稱為“環(huán)保達人”.視頻率為概率.①在我市所有“環(huán)保達人”中,隨機抽取3人,求抽取的3人中,既有男“環(huán)保達人”又有女“環(huán)保達人”的概率;②為了鼓勵市民關注環(huán)保,針對此次的調(diào)查制定了如下獎勵方案:“環(huán)保達人”獲得兩次抽獎活動;其他參與的市民獲得一次抽獎活動.每次抽獎獲得紅包的金額和對應的概率.如下表:紅包金額(單位:元)1020概率現(xiàn)某市民要參加此次問卷調(diào)查,記(單位:元)為該市民參加間卷調(diào)查獲得的紅包金額,求的分布列及數(shù)學期望.附表及公式:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82822.(10分)為貫徹十九大報告中“要提供更多優(yōu)質生態(tài)產(chǎn)品以滿足人民日益增長的優(yōu)美生態(tài)環(huán)境需要”的要求,某生物小組通過抽樣檢測植物高度的方法來監(jiān)測培育的某種植物的生長情況.現(xiàn)分別從、、三塊試驗田中各隨機抽取株植物測量高度,數(shù)據(jù)如下表(單位:厘米):組組組假設所有植株的生長情況相互獨立.從、、三組各隨機選株,組選出的植株記為甲,組選出的植株記為乙,組選出的植株記為丙.(1)求丙的高度小于厘米的概率;(2)求甲的高度大于乙的高度的概率;(3)表格中所有數(shù)據(jù)的平均數(shù)記為.從、、三塊試驗田中分別再隨機抽取株該種植物,它們的高度依次是、、(單位:厘米).這個新數(shù)據(jù)與表格中的所有數(shù)據(jù)構成的新樣本的平均數(shù)記為,試比較和的大?。ńY論不要求證明)
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
推導出函數(shù)是以為周期的周期函數(shù),由此可得出,代值計算即可.【詳解】由于偶函數(shù)的圖象關于點對稱,則,,,則,所以,函數(shù)是以為周期的周期函數(shù),由于當時,,則.故選:D.【點睛】本題考查利用函數(shù)的對稱性和奇偶性求函數(shù)值,推導出函數(shù)的周期性是解答的關鍵,考查推理能力與計算能力,屬于中等題.2、A【解析】
模擬執(zhí)行程序框圖,依次寫出每次循環(huán)得到的的值,當,,退出循環(huán),輸出結果.【詳解】程序運行過程如下:,;,;,;,;,;,;,,退出循環(huán),輸出結果為,故選:A.【點睛】該題考查的是有關程序框圖的問題,涉及到的知識點有判斷程序框圖輸出結果,屬于基礎題目.3、A【解析】
由,平面,可將三棱錐還原成長方體,則三棱錐的外接球即為長方體的外接球,進而求解.【詳解】由題,因為,所以,設,則由,可得,解得,可將三棱錐還原成如圖所示的長方體,則三棱錐的外接球即為長方體的外接球,設外接球的半徑為,則,所以,所以外接球的體積.故選:A【點睛】本題考查三棱錐的外接球體積,考查空間想象能力.4、A【解析】
選取中間值和,利用對數(shù)函數(shù),和指數(shù)函數(shù)的單調(diào)性即可求解.【詳解】因為對數(shù)函數(shù)在上單調(diào)遞增,所以,因為對數(shù)函數(shù)在上單調(diào)遞減,所以,因為指數(shù)函數(shù)在上單調(diào)遞增,所以,綜上可知,.故選:A【點睛】本題考查利用對數(shù)函數(shù)和指數(shù)函數(shù)的單調(diào)性比較大小;考查邏輯思維能力和知識的綜合運用能力;選取合適的中間值是求解本題的關鍵;屬于中檔題、常考題型.5、D【解析】因為的展開式中第4項與第8項的二項式系數(shù)相等,所以,解得,所以二項式中奇數(shù)項的二項式系數(shù)和為.考點:二項式系數(shù),二項式系數(shù)和.6、A【解析】試題分析:漸近線方程是﹣y2=1,整理后就得到雙曲線的漸近線.解:雙曲線其漸近線方程是﹣y2=1整理得x±2y=1.故選A.點評:本題考查了雙曲線的漸進方程,把雙曲線的標準方程中的“1”轉化成“1”即可求出漸進方程.屬于基礎題.7、D【解析】
利用等差數(shù)列的通項公式,可求解得到,利用求和公式和等差中項的性質,即得解【詳解】,解得..故選:D【點睛】本題考查了等差數(shù)列的通項公式、求和公式和等差中項,考查了學生綜合分析,轉化劃歸,數(shù)學運算的能力,屬于中檔題.8、C【解析】
函數(shù)的定義域應滿足故選C.9、A【解析】
先由題意可得數(shù)列為等差數(shù)列,再根據(jù),,可求出公差,即可求出.【詳解】數(shù)列滿足,則數(shù)列為等差數(shù)列,,,,,,,故選:.【點睛】本題主要考查了等差數(shù)列的性質和通項公式的求法,意在考查學生對這些知識的理解掌握水平,屬于基礎題.10、A【解析】
由函數(shù)性質,結合特殊值驗證,通過排除法求得結果.【詳解】對于選項B,為奇函數(shù)可判斷B錯誤;對于選項C,當時,,可判斷C錯誤;對于選項D,,可知函數(shù)在第一象限的圖象無增區(qū)間,故D錯誤;故選:A.【點睛】本題考查已知函數(shù)的圖象判斷解析式問題,通過函數(shù)性質及特殊值利用排除法是解決本題的關鍵,難度一般.11、B【解析】
分別求得所有基本事件個數(shù)和滿足題意的基本事件個數(shù),根據(jù)古典概型概率公式可求得結果.【詳解】從“八音”中任取不同的“兩音”共有種取法;“兩音”中含有打擊樂器的取法共有種取法;所求概率.故選:.【點睛】本題考查古典概型概率問題的求解,關鍵是能夠利用組合的知識求得基本事件總數(shù)和滿足題意的基本事件個數(shù).12、A【解析】
首先判斷函數(shù)的奇偶性,再根據(jù)特殊值即可利用排除法解得;【詳解】解:依題意,,故函數(shù)為偶函數(shù),圖象關于軸對稱,排除C;而,排除B;,排除D.故選:.【點睛】本題考查函數(shù)圖象的識別,函數(shù)的奇偶性的應用,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、20+45,8【解析】試題分析:由題意得,該幾何體為三棱柱,故其表面積S=2×1體積V=12×4×2×2=8,故填:20+4考點:1.三視圖;2.空間幾何體的表面積與體積.14、等腰三角形【解析】∵∴根據(jù)正弦定理可得,即∴∴∴的形狀為等腰三角形∵∴∴由余弦定理可得∴,即∵∴故答案為等腰三角形,15、【解析】
先求得復數(shù),再由復數(shù)模的計算公式即得.【詳解】,,則.故答案為:【點睛】本題考查復數(shù)的四則運算和求復數(shù)的模,是基礎題.16、3【解析】
分析程序中各變量、各語句的作用,根據(jù)流程圖所示的順序,即可得出結論.【詳解】解:初始,第一次循環(huán):;第二次循環(huán):;第三次循環(huán):;經(jīng)判斷,此時跳出循環(huán),輸出.故答案為:【點睛】本題考查了程序框圖的應用問題,解題的關鍵是對算法語句的理解,屬基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)【解析】
(1)將消去參數(shù)t可得直線的普通方程,利用x=ρcosθ,可將極坐標方程轉為直角坐標方程.(2)利用直線被圓截得的弦長公式計算可得答案.【詳解】(1)由消去參數(shù)t得(),由得曲線C的直角坐標方程為:(2)由得,圓心為(1,0),半徑為2,圓心到直線的距離為,∴,即,整理得,∵,∴,,,所以直線l的方程為:.【點睛】本題考查參數(shù)方程,極坐標方程與直角坐標方程之間的互化,考查直線被圓截得的弦長公式的應用,考查分析能力與計算能力,屬于基礎題.18、(1)(2)【解析】
(1)利用等差數(shù)列的通項公式以及等比中項求出公差,從而求出,再利用等比數(shù)列的前項和公式即可求解.(2)由(1)求出,再利用裂項求和法即可求解.【詳解】(1),且,,依次成等比數(shù)列,,即:,,,,,;(2),.【點睛】本題考查了等差數(shù)列、等比數(shù)列的通項公式、等比數(shù)列的前項和公式、裂項求和法,需熟記公式,屬于基礎題.19、(Ⅰ)詳見解析;(Ⅱ).【解析】試題分析:(Ⅰ)連接交于,得,所以面,又,得面,即可利用面面平行的判定定理,證得結論;(Ⅱ)如圖,以O為坐標原點,建立空間直角坐標系,求的平面的一個法向量,利用向量和向量夾角公式,即可求解與平面所成角的正弦值.試題解析:(Ⅰ)連接BD交AC于O,易知O是BD的中點,故OG//BE,BE面BEF,OG在面BEF外,所以OG//面BEF;又EF//AC,AC在面BEF外,AC//面BEF,又AC與OG相交于點O,面ACG有兩條相交直線與面BEF平行,故面ACG∥面BEF;(Ⅱ)如圖,以O為坐標原點,分別以OC、OD、OF為x、y、z軸建立空間直角坐標系,則,,,,,,,設面ABF的法向量為,依題意有,,令,,,,,直線AD與面ABF成的角的正弦值是.20、(1)(2)【解析】
(1)運用三角形面積公式求出的長度,然后再運用余弦定理求出的長.(2)運用正弦定理分別表示出和,結合已知條件計算出結果.【詳解】(1)由在中,由余弦定理可得(2)由已知得在中,由正弦定理可知在中,由正弦定理可知故【點睛】本題考查了正弦定理、三角形面積公式以及余弦定理,結合三角形熟練運用各公式是解題關鍵,此類題目是??碱}型,能夠運用公式進行邊角互化,需要掌握解題方法.21、(1)不能;(2)①;②分布列見解析,.【解析】
(1)根據(jù)題目所給的數(shù)據(jù)可求2×2列聯(lián)表即可;計算K的觀測值K2,對照題目中的表格,得出統(tǒng)計結論.(2)由相互獨立事件的概率可得男“環(huán)保達人”又有女“環(huán)保達人”的概率:P=1﹣()3﹣()3,解出X的分布列及數(shù)學期望E(X)即可;【詳解】(1)由圖中表格可得列聯(lián)表如下:非“環(huán)保關注者”是“環(huán)保關注者”合計男104555女153045合計2575
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024至2030年印花雙面絨毯項目投資價值分析報告
- 學校內(nèi)食品店承包合同范例
- 鋼結構個人合同范例
- 2024年重負載低壓真空接觸器項目可行性研究報告
- 2024年超厚方圓門項目可行性研究報告
- 2024年珍品海鮮面項目可行性研究報告
- 2024年海綿膠墊片項目可行性研究報告
- 2024年水表殼體項目可行性研究報告
- 陜西青年職業(yè)學院《納米材料與技術導論》2023-2024學年第一學期期末試卷
- 2024年剎車鑄件項目可行性研究報告
- 全國各地光伏電站最佳安裝傾角、峰值日照時數(shù)、首年發(fā)電量等速查表
- 高毒力肺炎克雷伯菌感染
- 《條形統(tǒng)計圖(以一當一)》教學建議
- 實驗室安全檢查記錄表(實驗場所)
- 國開作業(yè)《公共關系學》實訓項目3:社區(qū)關系建設(六選一)-實訓項目二社區(qū)關系建設方案-參考(含答案)98
- 1.焊工資格備案表
- 招聘求職簡歷制作表格模板可編輯下載 精品簡歷模板 簡歷封面 17
- 人教統(tǒng)編版高中語文必修下冊第六單元(單元總結)
- DB13∕T 5542-2022 水利水電工程施工組織設計編制指南
- 【股票指標公式下載】-【通達信】六脈神劍(底部來臨止跌牛勢股票)
- 拔牙-ppt課件
評論
0/150
提交評論