adb-新興氫能技術(shù)和全球發(fā)展動(dòng)能-EMERGING HYDROGEN ENERGY TECHNOLOGY AND GLOBAL MOMENTUM_第1頁(yè)
adb-新興氫能技術(shù)和全球發(fā)展動(dòng)能-EMERGING HYDROGEN ENERGY TECHNOLOGY AND GLOBAL MOMENTUM_第2頁(yè)
adb-新興氫能技術(shù)和全球發(fā)展動(dòng)能-EMERGING HYDROGEN ENERGY TECHNOLOGY AND GLOBAL MOMENTUM_第3頁(yè)
adb-新興氫能技術(shù)和全球發(fā)展動(dòng)能-EMERGING HYDROGEN ENERGY TECHNOLOGY AND GLOBAL MOMENTUM_第4頁(yè)
adb-新興氫能技術(shù)和全球發(fā)展動(dòng)能-EMERGING HYDROGEN ENERGY TECHNOLOGY AND GLOBAL MOMENTUM_第5頁(yè)
已閱讀5頁(yè),還剩103頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

EMERGINGHYDROGEN

ENERGYTECHNOLOGY

ANDGLOBALMOMENTUM

DanMillisonandKee-YungNam

NO.96

September2024

ADBSUSTAINABLEDEVELOPMENTWORKINGPAPERSERIES

ASIANDEVELOPMENTBANK

ADBSustainableDevelopmentWorkingPaperSeries

EmergingHydrogenEnergyTechnologyandGlobalMomentum

DanMillisonandKee-YungNamNo.96|September2024

TheADBSustainableDevelopmentWorking

PaperSeriespresentsdatafromongoing

researchtoencourageexchangeofideas

andelicitcommentandfeedbackabout

developmentissuesinAsiaandthePacific.

TheviewsexpressedarethoseoftheauthorsanddonotnecessarilyreflecttheviewsandpoliciesofADBoritsBoardofGovernors

orthegovernmentstheyrepresent.

DanMillisonisaconsultantfortheEnergySectorOffice,supportingAsianDevelopmentBank(ADB)programs

forinnovativetechnologyandbusinessmodelsinenergysectorandclimatechangeoperations.Hehasmorethan35yearsofprofessionalexperience,includingmorethan20yearsworkingoncleanenergyandclimatechange

financing.

Kee-YungNamisprincipalenergyeconomistinthe

EnergySectorGroup(SG-ENE),SectorsGroupof

ADB,whereheconceptualizesdevelopmentofADB’s

energysectorstrategiesandpolicies,andadvisesin

theformulationoftheenergysectorlendingandnon-

lendingpipelineofprojects.Heisalsoresponsiblefor

theEnergySectorTrustFundsandundertakesanalysis

andassessmentofkeyenergysectorissuesparticularlyincleanenergytechnologies.

ASIANDEVELOPMENTBANK

CreativeCommonsAttribution3.0IGOlicense(CCBY3.0IGO)

?2024AsianDevelopmentBank

6ADBAvenue,MandaluyongCity,1550MetroManila,Philippines

Tel+63286324444;Fax+63286362444

Somerightsreserved.Publishedin2024.

ISSN2789-0619(print),2789-0627(PDF)PublicationStockNo.WPS240403-2

DOI:

/10.22617/WPS240403-2

TheviewsexpressedinthispublicationarethoseoftheauthorsanddonotnecessarilyreflecttheviewsandpoliciesoftheAsianDevelopmentBank(ADB)oritsBoardofGovernorsorthegovernmentstheyrepresent.

ADBdoesnotguaranteetheaccuracyofthedataincludedinthispublicationandacceptsnoresponsibilityforany

consequenceoftheiruse.ThementionofspecificcompaniesorproductsofmanufacturersdoesnotimplythattheyareendorsedorrecommendedbyADBinpreferencetoothersofasimilarnaturethatarenotmentioned.

Bymakinganydesignationoforreferencetoaparticularterritoryorgeographicareainthisdocument,ADBdoesnotintendtomakeanyjudgmentsastothelegalorotherstatusofanyterritoryorarea.

ThispublicationisavailableundertheCreativeCommonsAttribution3.0IGOlicense(CCBY3.0IGO)

/licenses/by/3.0/igo/

.Byusingthecontentofthispublication,youagreetobeboundbythetermsofthislicense.Forattribution,translations,adaptations,andpermissions,pleasereadtheprovisionsandtermsofuseat

/terms-use#openaccess

.

ThisCClicensedoesnotapplytonon-ADBcopyrightmaterialsinthispublication.Ifthematerialisattributed

toanothersource,pleasecontactthecopyrightownerorpublisherofthatsourceforpermissiontoreproduceit.ADBcannotbeheldliableforanyclaimsthatariseasaresultofyouruseofthematerial.

Pleasecontact

pubsmarketing@

ifyouhavequestionsorcommentswithrespecttocontent,orifyouwishtoobtaincopyrightpermissionforyourintendedusethatdoesnotfallwithintheseterms,orforpermissiontousetheADBlogo.

TheADBSustainableDevelopmentWorkingPaperSeriespresentsdata,information,and/orfindingsfromongoing

researchandstudiestoencourageexchangeofideasandelicitcommentandfeedbackaboutdevelopmentissuesinAsiaandthePacific.Sincepapersinthisseriesareintendedforquickandeasydissemination,thecontentmayormaynotbefullyeditedandmaylaterbemodifiedforfinalpublication.

CorrigendatoADBpublicationsmaybefoundat

/publications/corrigenda

.

Notes:

Inthispublication,“$”referstoUnitedStatesdollars.

ADBrecognizes“Brunei”as“BruneiDarussalam,”“China”asthePeople’sRepublicofChina,“Korea”and“Korean”astheand/orfromtheRepublicofKorea.

CONTENTS

TABLESANDFIGURES

iv

ACKNOWLEDGMENTS

v

ABBREVIATIONS

vi

WEIGHTSANDMEASURES

vii

ABSTRACT

viii

I.BACKGROUNDANDCONTEXT

1

II.THEGREENHYDROGENVALUECHAIN

2

A.AdvantagesofGreenHydrogen

5

B.Production

7

C.TransmissionandDistribution

12

D.HydrogenStorage

15

E.EnvironmentalConsiderations

20

F.EndUses—TheMeritOrder

20

III.OVERVIEWOFDEVELOPMENTSINGREENHYDROGEN

26

A.BusinessandCommercialOperations

26

B.StandardsandRegulationsBarriers

27

C.IncentivesforIncubatingIndustryGrowth

29

IV.CHALLENGESOFTRANSITIONINGTOGREENHYDROGEN

31

A.CostofProductionandFinancialViability

31

B.RegulationsandStandards

35

C.RoadMapsandTargets

36

V.OPPORTUNITIESFORDEVELOPINGMEMBERCOUNTRIES

39

A.NationalEnergyTransitionRoadMaps,Strategies,andTargets

39

B.OverviewofOpportunitiesinDevelopingMemberCountries

40

C.FuturePolicyConsiderations

44

D.HydrogenTradingMarketPotential

45

VI.THEWAYFORWARD

48

REFERENCES

53

TABLESANDFIGURES

TABLES

1CharacteristicsofExistingElectrolyzerTechnologies

2MeritOrderandPotentialADBSupport

3NotableGreenHydrogenDevelopment

4RegulatoryandStandardsBarriers

5TechnicalandTrainingBarriers

6HydrogenIncentivesinEuropeandNorthAmerica

7HydrogenIncentivesinAsiaandAustralia

8KeyTechnicalFactorsAffectingFinancialViabilityofaHydrogenProjectandRecommendedActions

9KeyPolicyandOtherFactorsAffectingFinancialViabilityandRecommendedActions

10HydrogenTargetsandGovernmentInitiativesinEurope

11HydrogenTargetsandGovernmentInitiativesinAsiaandAustralia

12ADBHydrogenActivitiesasofMay2023

FIGURES

1HydrogenValueChain

2GlobalCarbonDioxideEmissionsbyEnergySector

3ElectrolyzerInstalledCapacity,2020-2050

4HydrogenSupplyChain

5HydrogenCycle

6ASimplifiedOverviewofanElectrolyzer

7LevelizedCostofHydrogeninEuropeBeforeandAftertheRussianInvasionofUkraine

8CostFactorsandLevelizedCostsofProduction

9KeyElementsofGreenHydrogenProductionProjects

10PolyethylenePipelinesUsedtoDistributeNaturalGas

11DibenzyltolueneLiquidOrganicHydrogenCarrierProcess

12HydrogenMetalHydrideCylinders

13LiquifiedHydrogenTank

14AnExampleofSaltCavern

15Ammonia-FueledTractor

16ElectrolyzersasGridManagementTools

17GreenOxygenStoredandUsed,IncreasingHydrogenProjectValue

18GreenHydrogenMeritOrder

19HydrogenSteelmaking

20KazakhstanSolar+WindtoHydrogenPotential

21IndonesiaTangguhHydrogenProductionScenario

22OffshoreRenewableEnergytoHydrogenPotentialinSelectADBDevelopingMemberCountries

23OffshoreRenewableEnergyMonetizationwith“Power-to-X”BusinessModel

24HydrogenCorridorsAcrossAllContinents

25TransitionfromNoncompetitivetoTradingHub

26ADB–ISAFrameworktoAssessEcosystemReadinessinCountriestoAdoptHydrogen

27ServicesofVirtualGlobalCenterofExcellenceforGreenHydrogen

8

24

27

28

28

30

30

32

34

37

38

49

3

3

4

5

6

7

10

11

12

13

14

15

16

17

17

18

19

21

23

41

42

43

44

46

47

50

51

ACKNOWLEDGMENTS

Thispaperbenefitedfrominputs,insights,andfeedbackfromcolleaguesacrossADB,includingpeerreviewersKaoruOginoandPradeepTharakan,EnergySectorOffice(SG-ENE).OverallguidancewasprovidedbyEnergySeniorDirectorPriyanthaWijayatungawithsupportfromPrincipalEnergyEconomistKee-YungNamandSeniorEnergyOfficerCharityTorregosa.Theproductionteamconsisted

ofCopyeditorMa.TheresaMercado;layoutanddesignbyAsiatype,Inc.

ABBREVIATIONS

ADB

AsianDevelopmentBank

CHP

combinedheatandpower

CO2

carbondioxide

CUF

capacityutilizationfactor

DMC

developingmembercountry

EU

EuropeanUnion

GHG

greenhousegas

IEA

InternationalEnergyAgency

ISA

InternationalSocietyofAutomation

LNG

liquefiednaturalgas

LOHC

liquidorganichydrogencarrier

OTEC

oceanthermalenergyconversion

PEM

protonexchangemembrane

PRC

People’sRepublicofChina

SMR

steam-methanereforming

US

UnitedStates

Btu

kg

km

MWMWh

tCO2e

TWh

WEIGHTSANDMEASURES

Britishthermalunit

kilogramkilometer

megawatt

megawatt-hour

tonsofcarbondioxideequivalentterawatt-hour

ABSTRACT

Thispaperprovidesanoverviewoftheemerginghydrogeneconomywithattentiontothemeritorderforhydrogenapplicationsandprospectiveinvestments,whichmightbesupportedbytheAsianDevelopmentBank(ADB).Thispaperisnotaguidancedocumentnorisitadesignhandbook.Rather,itprovidesbasicinformationonglobalcontext,technologies,costs,andprospectivedevelopmentsinADB’sdevelopingmembercountries.Thispaperaimstohelpdecision-makersnavigatethegreenhydrogenvaluechainandunderstandwhatisrequiredforsuccessfulimplementationandreapthepotentialrewardsintheenergytransition.

Today,mosthydrogenisproducedfromnaturalgaswithemissionsofabout9tonsofcarbondioxide

(CO2)pertonofhydrogen.In2021,greenhousegas(GHG)emissionsfromhydrogenwereestimatedat

around900milliontonsofCO2peryear,about1.8%ofGHGemissions.

Greenhydrogenisascalableandflexibleenergycarrierproducedbyconvertingrenewableelectricity(electrons)tosplitwaterintohydrogen(protons)andoxygen,whichcanbestoredindefinitelyorconvertedintoothermolecules.Theoxygenby-productcanbesoldintoexistingmarketsdependingonlocaldemand.Hydrogen-derivedchemicals(molecules)canbetransportedinbulkasisthecaseforcrudeoil,naturalgas,refinedpetroleumproducts,andotherchemicals.Likefossilfuels—whichareformedbyacombinationofsolar,biomass,geothermalenergy,andgeologictime—hydrogenisanenergycarrier.Specifically,solar-to-hydrogenmimicsthenaturalprocessesthatcreatefossilfuels,andpotentialusesofgreenhydrogenmimictheexistingglobalhydrocarbonsbusiness.Thescalabilityofintermittentsolarandwindresourcesislimitedbytheabilitytotime-shiftrenewableenergyoutputtomatchdemand,andhydrogenappearstobeascalablesolutionforbothtime-shiftingandlocation-shiftingofrenewableenergy.

Onekilogramofhydrogenhastheenergyequivalentof1gallon(3.94liters)ofgasoline.Thecost-effectivenessofgreenhydrogenproductiondependsonelectricityinputcosts,electrolyzercosts,andelectrolyzerloadfactors.Greenhydrogenproductionmaybecommerciallyviabletodayat$4/kg;although$2/kgistypicallyreferencedasapricebenchmark,$4/kgisatparwithgasolinepricesinmanycountries.Theuseofintermittentversus“baseload”renewableenergydoesnotdictatethecommercialviabilityofgreenhydrogenproduction.Akeyrate-limitingfactorforscalingupgreenhydrogenproductionistheavailabilityofcriticalmetals,specificallyiridiumandplatinumforuseinelectrolyzers.

Fromapolicyperspective,greenhydrogenisenergy-intensiveandisnotthesolutiontoall.Greenhydrogendevelopmentmustbeconsideredinthebroadercontextofrenewableenergydevelopmentandtheneedforacceleratingtheglobalenergytransition.Greenhydrogenisa“power-to-X”businesspropositionbasedonsellingmoleculesratherthansellingelectronsviapowerpurchaseagreements.Today,thereisnoglobalhydrogenmarketanalogoustoglobalcrudeoilandotherhydrocarbons.Therefore,theviabilityofgreenhydrogenproductiondependsprimarilyonelectrolyzercosts,localenergycosts,specificend-useapplications,andwillingnessofhydrogenbuyerstocommittolong-termofftakeagreements(liketraditionalliquefiednaturalgasexportprojects).Hydrogensupplychaindevelopmentisexpectedtocontinueglobally,andasglobalelectrolyzermanufacturingcapacityincreasesavirtuouscycleofdevelopmentmayemerge.

EmergingHydrogenEnergyTechnologyandGlobalMomentum1

I.BACKGROUNDANDCONTEXT

Greenhydrogenisproducedbyelectrolysis,aprocessthatsplitswaterintohydrogenandoxygenthatispoweredbyrenewableenergyorbyreformingbiogas.1Thetechnicallogicforgreenhydrogenisstraightforward:hydrogenproductionfromfossilfuelsisemissions-intensiveandsubjecttovolatilityoffossilfuelprices,whilegreenhydrogenproductionisenergy-intensive2butcreatescostcertainty.Themeritorderforgreenhydrogendeploymentbeginswithreplacementofestablishedfossilhydrogenproductionanduse,followedbydisplacementoffossilfuelsinheavy,hard-to-decarbonizeindustries.Productionofrenewablefuelsfromhydrogenfortransportapplicationsandproductionofhydrogenforlong-termbulkstorageappearlessattractivecomparedtoelectrifiedtransportandevolvingenergystoragetechnologies.Untilthereisaglobalhydrogensupplychainresemblingthatforcrudeoilandrefinedpetroleumproducts,greenhydrogendevelopmentwillbelocation-specific,withdecisionsmadeona“targetsofopportunity”basis.

Fortheforeseeablefuture,theuptakeofgreenhydrogeninvestmentisexpectedtoincreasedramaticallyinAsiaandthePacificregioninbothdevelopedandemergingeconomies.GreenhydrogenhubsaregrowinginAustralia,theEuropeanUnion,andtheMiddleEast.Thepaceandscaleoftheinvestmentremainstobeseenindevelopingcountriesduetoup-front=capitalcosts,limitedrenewableenergydevelopment,andlackofsupportingpoliciesandtechnicalexpertiseinbothpublicandprivateenergycompaniestoestablishafinanciallyviablegreenhydrogensupplychain.Additionalchallengesarehighinitialcostsofproduction,storageandtransportationconstraints,commercialviability,andlimitedmarketwithlarge-scalepurchaseagreementsyettobeseen.

GreenhydrogenwillbepartoftheenergymixiftheAsianDevelopmentBank(ADB)developingmembercountries(DMCs)aretoreachtheirclimategoalsandtransitiontoanet-zeroeconomy.TheInternationalEnergyAgency(IEA)estimatesthatabout34milliontonsperyearofgreenhydrogenwillbeneededby2030tomeetPariscommitments,andabout100milliontonsperyearwillbeneededby2050tomeetnet-zerotargets(IEA2022).Multiplegigawatt-scaleinvestmentswillbeneededacrossthegreenhydrogensupplychainforrenewableenergy,electrolyzersystems,hydrogenstorage,andretrofittingportsandpipelines.AccordingtotheIEAnet-zeroscenario,globalannualinvestmentsinlow-emissionshydrogenstandatabout$500milion,butwouldneedtoincreaseatleasttenfoldby2030.ADBhassupportedmultipleassessmentsinDMCsviatechnicalassistance,butminimalinvestmentoperationshavebeenmadeasofJune2023.

Overall,ADBDMCsthatseektoexploregreenhydrogenwillneedsupportindevelopingpolicies,enhancingknowledgeandtechnicalexpertise,anddevelopingpilotprojectsacrossthehydrogensupplychainandcoveringallrelatedinfrastructurefromproductiontotransmissionanddistributiontodemand-use.Furthermore,bothprivateandstate-ownedoilandgascompanies(e.g.,PertaminainIndonesia,SinopecinthePeople’sRepublicofChina[PRC],andAdaniandRelianceinIndia)andheavyindustriesaredevelopingtheirowndecarbonizationplansandareactivelyassessingpotentialinvestmentsanddevelopinglarge-scalehydrogenprojects.

Hydrogenisrapidlyevolvingglobally,anditisimpossibletocovereverythinginasingledocument.Therefore,thispaperprovidesanoverviewoftheemerginghydrogeneconomywithattentiontothe

1Reformingofbiogasistechnologicallythesameashydrogenproductionfromnaturalgas.Athirdproductionpathwayisthermaldecompositionofwaterintohydrogenandoxygen,whichrequirestemperatureofatleast1,800°C.

2Electrolysisofwatertoproducehydrogenandoxygenrequiresabout50megawatt-hours(MWh)pertonofhydrogenproduced,with8tonsofoxygenby-product.

2ADBSustainableDevelopmentWorkingPaperSeriesNo.96

meritorderforhydrogenapplicationsandprospectiveinvestmentsinDMCsthatmightbesupportedbyADB.

Thispaperisnotaguidancedocumentnorisitadesignhandbook.Rather,itprovideskeyinformationontechnologies,costs,andprospectivedevelopmentsthatmightbesupportedbyADBintheforeseeablefuture.Thispaperaimstohelpdecision-makersnavigatethegreenhydrogenvaluechainandunderstandwhatisrequiredforsuccessfulimplementationandreapthepotentialrewardsintheenergytransition.

II.THEGREENHYDROGENVALUECHAIN

Hydrogenisusedprimarilyasanintermediateproductinpetroleumrefiningandchemicalmanufacturingsuchasintheproductionoffertilizers(e.g.,ammonia).Forpurposesofdiscussioninthispaper,hydrogeniscommonlyclassifiedasfollows(thisclassificationissimplifiedandnotcomprehensive):

(i)Greenhydrogen(or“renewablehydrogen”)isproducedbyelectrolysisofwaterwithrenewableelectricity,atacostrangeofabout$2.7–$5.9/kilogram(kg).Nogreenhousegases(GHGs)areemittedduringtheelectrolysisprocess.Greenhydrogencanalsobeproducedbyreformingbiogas,whichmayhavesomefugitivemethaneemissions.Oxygenisaby-productoftheelectrolysisprocess,with8kgofoxygenforeachkgofhydrogen.GreenhydrogenproductionwasdemonstratedatmegawattscaleatahydropowerplantinNorwayin1929.3

(ii)Grayhydrogenisproducedfromnaturalgas,afossilfuel,bysteam-methanereforming(SMR)atacostaround$1.62/kg,dependingonthepriceofgasandcarbonemissions.Thisproductionprocessresultsinemissionsofabout9.3kgcarbondioxide(CO2)perkgofhydrogen.

(iii)Bluehydrogenusesthesameproductionprocessesasgrayhydrogen,buttheCO2iscapturedandstoredpermanently.Itsproductioncostsaround$2.16/kg,makingitmoreexpensivethangrayhydrogenbutcheaperthangreenhydrogen.WhereCO2storagecapacityisavailable,existinghydrogenproductionfacilitiescouldbeconvertedtobluehydrogen,thusreducinginvestmentcosts.

In2021,globalhydrogenproductionwasabout94milliontonsrecoveringtoabovepre-coronavirusdisease(COVID-19)pandemiclevels(91milliontonsin2019),whichcontainsenergyequaltoabout2.5%ofglobalfinalenergyconsumption.Mostoftheincreasecamefromtraditionalusesinrefiningandindustry,thoughdemandfornewapplicationsgrewtoabout40,000tons(up60%from2020,albeitfromalowbase)(IEA2022).Morethan75%oftheglobalhydrogenmarketisproducedfromnaturalgas(grayhydrogen),whichconsumes6%ofglobalnaturalgasproduction;GHGemissionsareestimatedataround900milliontonsofCO2peryear,about1.8%ofglobalGHGemissionsin2021.4Justunderone-fourth(23%)oftheglobalhydrogenmarketisproducedfromcoal(“brown”hydrogen)consumingabout2%oftheglobalcoalsupply.Theremainingshareofglobalhydrogencomesfromoilandelectricity(

Figure

1).Greenhydrogencurrentlyaccountsforonlyabout0.1%ofoverallhydrogenproduction(WorldEconomicForum2023).

3

4

LinkedIn.

TerjeHauan’sPost

.

GlobalGHGemissionswereabove54billiontonsofcarbondioxideequivalent(tCO2e)in2021:OurWorldinData.

Total

greenhousegasemissions

(accessedAugust2023).

EmergingHydrogenEnergyTechnologyandGlobalMomentum3

Figure1:HydrogenValueChain

DRI–directreducedironproduction,H2–hydrogen,Mt–milliontons,Mtoe–milliontonsofoilequivalent.Source:InternationalEnergyAgency,2019.

GreenhydrogenwillbeanessentialpartoftheenergymixifADBDMCsaretoreachtheirclimategoalsandtransitiontoanet-zeroeconomy.

Figure

2illustratesglobalCO2emissionsbysector,withelectricpowergenerationaccountingfor38%ofemissionswithothersectorsaccountingfor62%(InternationalRenewableEnergyAgency2018).Freighttransport,alongwithironandsteel,cement,chemical,andaluminumproduction,accountfor27%ofemissions:addressingthesehard-to-decarbonizesectorsisrequiredtoreachthe1.5targetoftheParisclimateaccords(IPCC2018,UNEP2019).

Figure2:GlobalCarbonDioxideEmissionsbyEnergySector

Source:InternationalRenewableEnergyAgency,2018.

Althoughgreenhydrogencurrentlymakesupaverysmallshareofthehydrogenmarket(lessthan1%),theamountofelectrolyzercapacityforgreenhydrogenproductionhassignificantlyincreasedinrecentyears(

Figure

3).Thecost-competitivenessofgreenhydrogenproductionwillimproveaselectrolyzerefficiencyincreasesandelectrolyzercostsdecline.

4ADBSustainableDevelopmentWorkingPaperSeriesNo.96

ElectrolyzerCapacity(GW)

5,500

4,500

3,500

2,500

1,500

500

-500

Figure3:ElectrolyzerInstalledCapacity,2020–2050

2020202520302035204020452050

Year

BasecaseAggressivedevelopment

GW=gigawatt.

Source:WorldResourcesInstitute,2023.DerivedfromInternationalEnergyAgencyGlobalHydrogenReview2022,andDNVHydrogenForecastto2050,2022.

Asshownin

Figure

4thehydrogensupplychainsinclude:

(i)Accesstorawmaterialsforproduction(feedstock,electricity,etc.).

(ii)Productiontechnologies:steam-methanereforming(SMR,electrolyzers,etc.).

(iii)Storage:Hydrogencanbestoredphysicallyaseitheragasoraliquid.Storageofhydrogenasagastypicallyrequireshigh-pressuretanks(350–700bar[5,000–10,000poundspersquareinch(psi)]tankpressure)(USDepartmentofEnergy2019).Transportanddistribution:pipelines,tubetrailer,tankers,etc.

(iv)End-useapplications:transport,stationaryconsumption.

(v)Supportservices,whichareusuallynotrecognizedaspartofthehydrogensupplychainbutarecriticaltotheoperationofhydrogenprojects(e.g.,health,safety,andenvironment;qualityassurance,training,etc.).

EmergingHydrogenEnergyTechnologyandGlobalMomentum5

Figure4:HydrogenSupplyChain

CC=carboncapture,FC=fuelcell.

Source:InternationalRenewableEnergyAgency,2018.

A.AdvantagesofGreenHydrogen

GreenhydrogenappearstobeamultipurposeandadaptableapproachtoreduceCO2emissionsatscalebutfacestechnical,safety,financial,andeconomicchallenges.Greenhydrogensolutions,whendevelopedanddeployedwidely,canprovidenumerousbenefitsasfollows:

(i)Acceleratingtheintegrationandpenetrationofcleanenergysolutions,includingsolar,wind,miniandlargehydro,marineenergy,etc.

(ii)Improvingthetechno-commercialviabilityofdemand-sidemanagementwithbetter,moreresilient,reliable,andversatileenergystorage.

(iii)Deliveringabetteroperationandmanagementsolutiontopeakloadsandreducegridinstabilityandcongestion.

(iv)Increasingthenumberofenduserapplicationsindifferentsectors(transport,heat,etc.).

(v)Expandingnewvariableintermittentrenewablegenerationwithgreenhydrogenforelectricalgridnetworkbalancingandlong-termbulkstorage.

(vi)Providingadecentralizedsolutionandreducingrisksassociatedwithelectricityinfrastructureleadingtobulkcurtailmentofrenewableenergygeneration.

(vii)Creatingnewemploymentingreenhydrogen,automotive,fuelcell,safety,andotherbusinesses.

(viii)Increasingenergysecurity,reducingdependenceonfossilfuels,andprovidingoptimumuseofnationalresources.

(ix)Formingnewregionalmarketssellingandbuyinggreenhydrogenenergy.

6ADBSustainableDevelopmentWorkingPaperSeriesN

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論