版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
EMERGINGHYDROGEN
ENERGYTECHNOLOGY
ANDGLOBALMOMENTUM
DanMillisonandKee-YungNam
NO.96
September2024
ADBSUSTAINABLEDEVELOPMENTWORKINGPAPERSERIES
ASIANDEVELOPMENTBANK
ADBSustainableDevelopmentWorkingPaperSeries
EmergingHydrogenEnergyTechnologyandGlobalMomentum
DanMillisonandKee-YungNamNo.96|September2024
TheADBSustainableDevelopmentWorking
PaperSeriespresentsdatafromongoing
researchtoencourageexchangeofideas
andelicitcommentandfeedbackabout
developmentissuesinAsiaandthePacific.
TheviewsexpressedarethoseoftheauthorsanddonotnecessarilyreflecttheviewsandpoliciesofADBoritsBoardofGovernors
orthegovernmentstheyrepresent.
DanMillisonisaconsultantfortheEnergySectorOffice,supportingAsianDevelopmentBank(ADB)programs
forinnovativetechnologyandbusinessmodelsinenergysectorandclimatechangeoperations.Hehasmorethan35yearsofprofessionalexperience,includingmorethan20yearsworkingoncleanenergyandclimatechange
financing.
Kee-YungNamisprincipalenergyeconomistinthe
EnergySectorGroup(SG-ENE),SectorsGroupof
ADB,whereheconceptualizesdevelopmentofADB’s
energysectorstrategiesandpolicies,andadvisesin
theformulationoftheenergysectorlendingandnon-
lendingpipelineofprojects.Heisalsoresponsiblefor
theEnergySectorTrustFundsandundertakesanalysis
andassessmentofkeyenergysectorissuesparticularlyincleanenergytechnologies.
ASIANDEVELOPMENTBANK
CreativeCommonsAttribution3.0IGOlicense(CCBY3.0IGO)
?2024AsianDevelopmentBank
6ADBAvenue,MandaluyongCity,1550MetroManila,Philippines
Tel+63286324444;Fax+63286362444
Somerightsreserved.Publishedin2024.
ISSN2789-0619(print),2789-0627(PDF)PublicationStockNo.WPS240403-2
DOI:
/10.22617/WPS240403-2
TheviewsexpressedinthispublicationarethoseoftheauthorsanddonotnecessarilyreflecttheviewsandpoliciesoftheAsianDevelopmentBank(ADB)oritsBoardofGovernorsorthegovernmentstheyrepresent.
ADBdoesnotguaranteetheaccuracyofthedataincludedinthispublicationandacceptsnoresponsibilityforany
consequenceoftheiruse.ThementionofspecificcompaniesorproductsofmanufacturersdoesnotimplythattheyareendorsedorrecommendedbyADBinpreferencetoothersofasimilarnaturethatarenotmentioned.
Bymakinganydesignationoforreferencetoaparticularterritoryorgeographicareainthisdocument,ADBdoesnotintendtomakeanyjudgmentsastothelegalorotherstatusofanyterritoryorarea.
ThispublicationisavailableundertheCreativeCommonsAttribution3.0IGOlicense(CCBY3.0IGO)
/licenses/by/3.0/igo/
.Byusingthecontentofthispublication,youagreetobeboundbythetermsofthislicense.Forattribution,translations,adaptations,andpermissions,pleasereadtheprovisionsandtermsofuseat
/terms-use#openaccess
.
ThisCClicensedoesnotapplytonon-ADBcopyrightmaterialsinthispublication.Ifthematerialisattributed
toanothersource,pleasecontactthecopyrightownerorpublisherofthatsourceforpermissiontoreproduceit.ADBcannotbeheldliableforanyclaimsthatariseasaresultofyouruseofthematerial.
Pleasecontact
pubsmarketing@
ifyouhavequestionsorcommentswithrespecttocontent,orifyouwishtoobtaincopyrightpermissionforyourintendedusethatdoesnotfallwithintheseterms,orforpermissiontousetheADBlogo.
TheADBSustainableDevelopmentWorkingPaperSeriespresentsdata,information,and/orfindingsfromongoing
researchandstudiestoencourageexchangeofideasandelicitcommentandfeedbackaboutdevelopmentissuesinAsiaandthePacific.Sincepapersinthisseriesareintendedforquickandeasydissemination,thecontentmayormaynotbefullyeditedandmaylaterbemodifiedforfinalpublication.
CorrigendatoADBpublicationsmaybefoundat
/publications/corrigenda
.
Notes:
Inthispublication,“$”referstoUnitedStatesdollars.
ADBrecognizes“Brunei”as“BruneiDarussalam,”“China”asthePeople’sRepublicofChina,“Korea”and“Korean”astheand/orfromtheRepublicofKorea.
CONTENTS
TABLESANDFIGURES
iv
ACKNOWLEDGMENTS
v
ABBREVIATIONS
vi
WEIGHTSANDMEASURES
vii
ABSTRACT
viii
I.BACKGROUNDANDCONTEXT
1
II.THEGREENHYDROGENVALUECHAIN
2
A.AdvantagesofGreenHydrogen
5
B.Production
7
C.TransmissionandDistribution
12
D.HydrogenStorage
15
E.EnvironmentalConsiderations
20
F.EndUses—TheMeritOrder
20
III.OVERVIEWOFDEVELOPMENTSINGREENHYDROGEN
26
A.BusinessandCommercialOperations
26
B.StandardsandRegulationsBarriers
27
C.IncentivesforIncubatingIndustryGrowth
29
IV.CHALLENGESOFTRANSITIONINGTOGREENHYDROGEN
31
A.CostofProductionandFinancialViability
31
B.RegulationsandStandards
35
C.RoadMapsandTargets
36
V.OPPORTUNITIESFORDEVELOPINGMEMBERCOUNTRIES
39
A.NationalEnergyTransitionRoadMaps,Strategies,andTargets
39
B.OverviewofOpportunitiesinDevelopingMemberCountries
40
C.FuturePolicyConsiderations
44
D.HydrogenTradingMarketPotential
45
VI.THEWAYFORWARD
48
REFERENCES
53
TABLESANDFIGURES
TABLES
1CharacteristicsofExistingElectrolyzerTechnologies
2MeritOrderandPotentialADBSupport
3NotableGreenHydrogenDevelopment
4RegulatoryandStandardsBarriers
5TechnicalandTrainingBarriers
6HydrogenIncentivesinEuropeandNorthAmerica
7HydrogenIncentivesinAsiaandAustralia
8KeyTechnicalFactorsAffectingFinancialViabilityofaHydrogenProjectandRecommendedActions
9KeyPolicyandOtherFactorsAffectingFinancialViabilityandRecommendedActions
10HydrogenTargetsandGovernmentInitiativesinEurope
11HydrogenTargetsandGovernmentInitiativesinAsiaandAustralia
12ADBHydrogenActivitiesasofMay2023
FIGURES
1HydrogenValueChain
2GlobalCarbonDioxideEmissionsbyEnergySector
3ElectrolyzerInstalledCapacity,2020-2050
4HydrogenSupplyChain
5HydrogenCycle
6ASimplifiedOverviewofanElectrolyzer
7LevelizedCostofHydrogeninEuropeBeforeandAftertheRussianInvasionofUkraine
8CostFactorsandLevelizedCostsofProduction
9KeyElementsofGreenHydrogenProductionProjects
10PolyethylenePipelinesUsedtoDistributeNaturalGas
11DibenzyltolueneLiquidOrganicHydrogenCarrierProcess
12HydrogenMetalHydrideCylinders
13LiquifiedHydrogenTank
14AnExampleofSaltCavern
15Ammonia-FueledTractor
16ElectrolyzersasGridManagementTools
17GreenOxygenStoredandUsed,IncreasingHydrogenProjectValue
18GreenHydrogenMeritOrder
19HydrogenSteelmaking
20KazakhstanSolar+WindtoHydrogenPotential
21IndonesiaTangguhHydrogenProductionScenario
22OffshoreRenewableEnergytoHydrogenPotentialinSelectADBDevelopingMemberCountries
23OffshoreRenewableEnergyMonetizationwith“Power-to-X”BusinessModel
24HydrogenCorridorsAcrossAllContinents
25TransitionfromNoncompetitivetoTradingHub
26ADB–ISAFrameworktoAssessEcosystemReadinessinCountriestoAdoptHydrogen
27ServicesofVirtualGlobalCenterofExcellenceforGreenHydrogen
8
24
27
28
28
30
30
32
34
37
38
49
3
3
4
5
6
7
10
11
12
13
14
15
16
17
17
18
19
21
23
41
42
43
44
46
47
50
51
ACKNOWLEDGMENTS
Thispaperbenefitedfrominputs,insights,andfeedbackfromcolleaguesacrossADB,includingpeerreviewersKaoruOginoandPradeepTharakan,EnergySectorOffice(SG-ENE).OverallguidancewasprovidedbyEnergySeniorDirectorPriyanthaWijayatungawithsupportfromPrincipalEnergyEconomistKee-YungNamandSeniorEnergyOfficerCharityTorregosa.Theproductionteamconsisted
ofCopyeditorMa.TheresaMercado;layoutanddesignbyAsiatype,Inc.
ABBREVIATIONS
ADB
–
AsianDevelopmentBank
CHP
–
combinedheatandpower
CO2
–
carbondioxide
CUF
–
capacityutilizationfactor
DMC
–
developingmembercountry
EU
–
EuropeanUnion
GHG
–
greenhousegas
IEA
–
InternationalEnergyAgency
ISA
–
InternationalSocietyofAutomation
LNG
–
liquefiednaturalgas
LOHC
–
liquidorganichydrogencarrier
OTEC
–
oceanthermalenergyconversion
PEM
–
protonexchangemembrane
PRC
–
People’sRepublicofChina
SMR
–
steam-methanereforming
US
–
UnitedStates
–
Btu
–
kg
–
km
–
–
MWMWh
–
tCO2e
–
TWh
WEIGHTSANDMEASURES
Britishthermalunit
kilogramkilometer
megawatt
megawatt-hour
tonsofcarbondioxideequivalentterawatt-hour
ABSTRACT
Thispaperprovidesanoverviewoftheemerginghydrogeneconomywithattentiontothemeritorderforhydrogenapplicationsandprospectiveinvestments,whichmightbesupportedbytheAsianDevelopmentBank(ADB).Thispaperisnotaguidancedocumentnorisitadesignhandbook.Rather,itprovidesbasicinformationonglobalcontext,technologies,costs,andprospectivedevelopmentsinADB’sdevelopingmembercountries.Thispaperaimstohelpdecision-makersnavigatethegreenhydrogenvaluechainandunderstandwhatisrequiredforsuccessfulimplementationandreapthepotentialrewardsintheenergytransition.
Today,mosthydrogenisproducedfromnaturalgaswithemissionsofabout9tonsofcarbondioxide
(CO2)pertonofhydrogen.In2021,greenhousegas(GHG)emissionsfromhydrogenwereestimatedat
around900milliontonsofCO2peryear,about1.8%ofGHGemissions.
Greenhydrogenisascalableandflexibleenergycarrierproducedbyconvertingrenewableelectricity(electrons)tosplitwaterintohydrogen(protons)andoxygen,whichcanbestoredindefinitelyorconvertedintoothermolecules.Theoxygenby-productcanbesoldintoexistingmarketsdependingonlocaldemand.Hydrogen-derivedchemicals(molecules)canbetransportedinbulkasisthecaseforcrudeoil,naturalgas,refinedpetroleumproducts,andotherchemicals.Likefossilfuels—whichareformedbyacombinationofsolar,biomass,geothermalenergy,andgeologictime—hydrogenisanenergycarrier.Specifically,solar-to-hydrogenmimicsthenaturalprocessesthatcreatefossilfuels,andpotentialusesofgreenhydrogenmimictheexistingglobalhydrocarbonsbusiness.Thescalabilityofintermittentsolarandwindresourcesislimitedbytheabilitytotime-shiftrenewableenergyoutputtomatchdemand,andhydrogenappearstobeascalablesolutionforbothtime-shiftingandlocation-shiftingofrenewableenergy.
Onekilogramofhydrogenhastheenergyequivalentof1gallon(3.94liters)ofgasoline.Thecost-effectivenessofgreenhydrogenproductiondependsonelectricityinputcosts,electrolyzercosts,andelectrolyzerloadfactors.Greenhydrogenproductionmaybecommerciallyviabletodayat$4/kg;although$2/kgistypicallyreferencedasapricebenchmark,$4/kgisatparwithgasolinepricesinmanycountries.Theuseofintermittentversus“baseload”renewableenergydoesnotdictatethecommercialviabilityofgreenhydrogenproduction.Akeyrate-limitingfactorforscalingupgreenhydrogenproductionistheavailabilityofcriticalmetals,specificallyiridiumandplatinumforuseinelectrolyzers.
Fromapolicyperspective,greenhydrogenisenergy-intensiveandisnotthesolutiontoall.Greenhydrogendevelopmentmustbeconsideredinthebroadercontextofrenewableenergydevelopmentandtheneedforacceleratingtheglobalenergytransition.Greenhydrogenisa“power-to-X”businesspropositionbasedonsellingmoleculesratherthansellingelectronsviapowerpurchaseagreements.Today,thereisnoglobalhydrogenmarketanalogoustoglobalcrudeoilandotherhydrocarbons.Therefore,theviabilityofgreenhydrogenproductiondependsprimarilyonelectrolyzercosts,localenergycosts,specificend-useapplications,andwillingnessofhydrogenbuyerstocommittolong-termofftakeagreements(liketraditionalliquefiednaturalgasexportprojects).Hydrogensupplychaindevelopmentisexpectedtocontinueglobally,andasglobalelectrolyzermanufacturingcapacityincreasesavirtuouscycleofdevelopmentmayemerge.
EmergingHydrogenEnergyTechnologyandGlobalMomentum1
I.BACKGROUNDANDCONTEXT
Greenhydrogenisproducedbyelectrolysis,aprocessthatsplitswaterintohydrogenandoxygenthatispoweredbyrenewableenergyorbyreformingbiogas.1Thetechnicallogicforgreenhydrogenisstraightforward:hydrogenproductionfromfossilfuelsisemissions-intensiveandsubjecttovolatilityoffossilfuelprices,whilegreenhydrogenproductionisenergy-intensive2butcreatescostcertainty.Themeritorderforgreenhydrogendeploymentbeginswithreplacementofestablishedfossilhydrogenproductionanduse,followedbydisplacementoffossilfuelsinheavy,hard-to-decarbonizeindustries.Productionofrenewablefuelsfromhydrogenfortransportapplicationsandproductionofhydrogenforlong-termbulkstorageappearlessattractivecomparedtoelectrifiedtransportandevolvingenergystoragetechnologies.Untilthereisaglobalhydrogensupplychainresemblingthatforcrudeoilandrefinedpetroleumproducts,greenhydrogendevelopmentwillbelocation-specific,withdecisionsmadeona“targetsofopportunity”basis.
Fortheforeseeablefuture,theuptakeofgreenhydrogeninvestmentisexpectedtoincreasedramaticallyinAsiaandthePacificregioninbothdevelopedandemergingeconomies.GreenhydrogenhubsaregrowinginAustralia,theEuropeanUnion,andtheMiddleEast.Thepaceandscaleoftheinvestmentremainstobeseenindevelopingcountriesduetoup-front=capitalcosts,limitedrenewableenergydevelopment,andlackofsupportingpoliciesandtechnicalexpertiseinbothpublicandprivateenergycompaniestoestablishafinanciallyviablegreenhydrogensupplychain.Additionalchallengesarehighinitialcostsofproduction,storageandtransportationconstraints,commercialviability,andlimitedmarketwithlarge-scalepurchaseagreementsyettobeseen.
GreenhydrogenwillbepartoftheenergymixiftheAsianDevelopmentBank(ADB)developingmembercountries(DMCs)aretoreachtheirclimategoalsandtransitiontoanet-zeroeconomy.TheInternationalEnergyAgency(IEA)estimatesthatabout34milliontonsperyearofgreenhydrogenwillbeneededby2030tomeetPariscommitments,andabout100milliontonsperyearwillbeneededby2050tomeetnet-zerotargets(IEA2022).Multiplegigawatt-scaleinvestmentswillbeneededacrossthegreenhydrogensupplychainforrenewableenergy,electrolyzersystems,hydrogenstorage,andretrofittingportsandpipelines.AccordingtotheIEAnet-zeroscenario,globalannualinvestmentsinlow-emissionshydrogenstandatabout$500milion,butwouldneedtoincreaseatleasttenfoldby2030.ADBhassupportedmultipleassessmentsinDMCsviatechnicalassistance,butminimalinvestmentoperationshavebeenmadeasofJune2023.
Overall,ADBDMCsthatseektoexploregreenhydrogenwillneedsupportindevelopingpolicies,enhancingknowledgeandtechnicalexpertise,anddevelopingpilotprojectsacrossthehydrogensupplychainandcoveringallrelatedinfrastructurefromproductiontotransmissionanddistributiontodemand-use.Furthermore,bothprivateandstate-ownedoilandgascompanies(e.g.,PertaminainIndonesia,SinopecinthePeople’sRepublicofChina[PRC],andAdaniandRelianceinIndia)andheavyindustriesaredevelopingtheirowndecarbonizationplansandareactivelyassessingpotentialinvestmentsanddevelopinglarge-scalehydrogenprojects.
Hydrogenisrapidlyevolvingglobally,anditisimpossibletocovereverythinginasingledocument.Therefore,thispaperprovidesanoverviewoftheemerginghydrogeneconomywithattentiontothe
1Reformingofbiogasistechnologicallythesameashydrogenproductionfromnaturalgas.Athirdproductionpathwayisthermaldecompositionofwaterintohydrogenandoxygen,whichrequirestemperatureofatleast1,800°C.
2Electrolysisofwatertoproducehydrogenandoxygenrequiresabout50megawatt-hours(MWh)pertonofhydrogenproduced,with8tonsofoxygenby-product.
2ADBSustainableDevelopmentWorkingPaperSeriesNo.96
meritorderforhydrogenapplicationsandprospectiveinvestmentsinDMCsthatmightbesupportedbyADB.
Thispaperisnotaguidancedocumentnorisitadesignhandbook.Rather,itprovideskeyinformationontechnologies,costs,andprospectivedevelopmentsthatmightbesupportedbyADBintheforeseeablefuture.Thispaperaimstohelpdecision-makersnavigatethegreenhydrogenvaluechainandunderstandwhatisrequiredforsuccessfulimplementationandreapthepotentialrewardsintheenergytransition.
II.THEGREENHYDROGENVALUECHAIN
Hydrogenisusedprimarilyasanintermediateproductinpetroleumrefiningandchemicalmanufacturingsuchasintheproductionoffertilizers(e.g.,ammonia).Forpurposesofdiscussioninthispaper,hydrogeniscommonlyclassifiedasfollows(thisclassificationissimplifiedandnotcomprehensive):
(i)Greenhydrogen(or“renewablehydrogen”)isproducedbyelectrolysisofwaterwithrenewableelectricity,atacostrangeofabout$2.7–$5.9/kilogram(kg).Nogreenhousegases(GHGs)areemittedduringtheelectrolysisprocess.Greenhydrogencanalsobeproducedbyreformingbiogas,whichmayhavesomefugitivemethaneemissions.Oxygenisaby-productoftheelectrolysisprocess,with8kgofoxygenforeachkgofhydrogen.GreenhydrogenproductionwasdemonstratedatmegawattscaleatahydropowerplantinNorwayin1929.3
(ii)Grayhydrogenisproducedfromnaturalgas,afossilfuel,bysteam-methanereforming(SMR)atacostaround$1.62/kg,dependingonthepriceofgasandcarbonemissions.Thisproductionprocessresultsinemissionsofabout9.3kgcarbondioxide(CO2)perkgofhydrogen.
(iii)Bluehydrogenusesthesameproductionprocessesasgrayhydrogen,buttheCO2iscapturedandstoredpermanently.Itsproductioncostsaround$2.16/kg,makingitmoreexpensivethangrayhydrogenbutcheaperthangreenhydrogen.WhereCO2storagecapacityisavailable,existinghydrogenproductionfacilitiescouldbeconvertedtobluehydrogen,thusreducinginvestmentcosts.
In2021,globalhydrogenproductionwasabout94milliontonsrecoveringtoabovepre-coronavirusdisease(COVID-19)pandemiclevels(91milliontonsin2019),whichcontainsenergyequaltoabout2.5%ofglobalfinalenergyconsumption.Mostoftheincreasecamefromtraditionalusesinrefiningandindustry,thoughdemandfornewapplicationsgrewtoabout40,000tons(up60%from2020,albeitfromalowbase)(IEA2022).Morethan75%oftheglobalhydrogenmarketisproducedfromnaturalgas(grayhydrogen),whichconsumes6%ofglobalnaturalgasproduction;GHGemissionsareestimatedataround900milliontonsofCO2peryear,about1.8%ofglobalGHGemissionsin2021.4Justunderone-fourth(23%)oftheglobalhydrogenmarketisproducedfromcoal(“brown”hydrogen)consumingabout2%oftheglobalcoalsupply.Theremainingshareofglobalhydrogencomesfromoilandelectricity(
Figure
1).Greenhydrogencurrentlyaccountsforonlyabout0.1%ofoverallhydrogenproduction(WorldEconomicForum2023).
3
4
LinkedIn.
TerjeHauan’sPost
.
GlobalGHGemissionswereabove54billiontonsofcarbondioxideequivalent(tCO2e)in2021:OurWorldinData.
Total
greenhousegasemissions
(accessedAugust2023).
EmergingHydrogenEnergyTechnologyandGlobalMomentum3
Figure1:HydrogenValueChain
DRI–directreducedironproduction,H2–hydrogen,Mt–milliontons,Mtoe–milliontonsofoilequivalent.Source:InternationalEnergyAgency,2019.
GreenhydrogenwillbeanessentialpartoftheenergymixifADBDMCsaretoreachtheirclimategoalsandtransitiontoanet-zeroeconomy.
Figure
2illustratesglobalCO2emissionsbysector,withelectricpowergenerationaccountingfor38%ofemissionswithothersectorsaccountingfor62%(InternationalRenewableEnergyAgency2018).Freighttransport,alongwithironandsteel,cement,chemical,andaluminumproduction,accountfor27%ofemissions:addressingthesehard-to-decarbonizesectorsisrequiredtoreachthe1.5targetoftheParisclimateaccords(IPCC2018,UNEP2019).
Figure2:GlobalCarbonDioxideEmissionsbyEnergySector
Source:InternationalRenewableEnergyAgency,2018.
Althoughgreenhydrogencurrentlymakesupaverysmallshareofthehydrogenmarket(lessthan1%),theamountofelectrolyzercapacityforgreenhydrogenproductionhassignificantlyincreasedinrecentyears(
Figure
3).Thecost-competitivenessofgreenhydrogenproductionwillimproveaselectrolyzerefficiencyincreasesandelectrolyzercostsdecline.
4ADBSustainableDevelopmentWorkingPaperSeriesNo.96
ElectrolyzerCapacity(GW)
5,500
4,500
3,500
2,500
1,500
500
-500
Figure3:ElectrolyzerInstalledCapacity,2020–2050
2020202520302035204020452050
Year
BasecaseAggressivedevelopment
GW=gigawatt.
Source:WorldResourcesInstitute,2023.DerivedfromInternationalEnergyAgencyGlobalHydrogenReview2022,andDNVHydrogenForecastto2050,2022.
Asshownin
Figure
4thehydrogensupplychainsinclude:
(i)Accesstorawmaterialsforproduction(feedstock,electricity,etc.).
(ii)Productiontechnologies:steam-methanereforming(SMR,electrolyzers,etc.).
(iii)Storage:Hydrogencanbestoredphysicallyaseitheragasoraliquid.Storageofhydrogenasagastypicallyrequireshigh-pressuretanks(350–700bar[5,000–10,000poundspersquareinch(psi)]tankpressure)(USDepartmentofEnergy2019).Transportanddistribution:pipelines,tubetrailer,tankers,etc.
(iv)End-useapplications:transport,stationaryconsumption.
(v)Supportservices,whichareusuallynotrecognizedaspartofthehydrogensupplychainbutarecriticaltotheoperationofhydrogenprojects(e.g.,health,safety,andenvironment;qualityassurance,training,etc.).
EmergingHydrogenEnergyTechnologyandGlobalMomentum5
Figure4:HydrogenSupplyChain
CC=carboncapture,FC=fuelcell.
Source:InternationalRenewableEnergyAgency,2018.
A.AdvantagesofGreenHydrogen
GreenhydrogenappearstobeamultipurposeandadaptableapproachtoreduceCO2emissionsatscalebutfacestechnical,safety,financial,andeconomicchallenges.Greenhydrogensolutions,whendevelopedanddeployedwidely,canprovidenumerousbenefitsasfollows:
(i)Acceleratingtheintegrationandpenetrationofcleanenergysolutions,includingsolar,wind,miniandlargehydro,marineenergy,etc.
(ii)Improvingthetechno-commercialviabilityofdemand-sidemanagementwithbetter,moreresilient,reliable,andversatileenergystorage.
(iii)Deliveringabetteroperationandmanagementsolutiontopeakloadsandreducegridinstabilityandcongestion.
(iv)Increasingthenumberofenduserapplicationsindifferentsectors(transport,heat,etc.).
(v)Expandingnewvariableintermittentrenewablegenerationwithgreenhydrogenforelectricalgridnetworkbalancingandlong-termbulkstorage.
(vi)Providingadecentralizedsolutionandreducingrisksassociatedwithelectricityinfrastructureleadingtobulkcurtailmentofrenewableenergygeneration.
(vii)Creatingnewemploymentingreenhydrogen,automotive,fuelcell,safety,andotherbusinesses.
(viii)Increasingenergysecurity,reducingdependenceonfossilfuels,andprovidingoptimumuseofnationalresources.
(ix)Formingnewregionalmarketssellingandbuyinggreenhydrogenenergy.
6ADBSustainableDevelopmentWorkingPaperSeriesN
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年城市別墅裝修改造服務(wù)協(xié)議
- 2024水電項(xiàng)目工程承包協(xié)議范本
- 2024年酒店用品買賣協(xié)議
- 2024年房屋租賃三方協(xié)議樣本
- 店鋪裝修設(shè)計(jì)與施工一體化協(xié)議模板
- 2024年度勞動(dòng)力成本協(xié)議樣本
- DB11∕T 1697-2019 動(dòng)力鋰離子蓄電池制造業(yè)綠色工廠評(píng)價(jià)要求
- 2024年度中央空調(diào)系統(tǒng)翻新工程協(xié)議
- 2024商業(yè)采購(gòu)協(xié)議模板全面指南
- 2024年輔導(dǎo)班家長(zhǎng)服務(wù)協(xié)議
- 水系統(tǒng)中央空調(diào)工程材料清單
- 小學(xué)六年級(jí)數(shù)學(xué)上冊(cè)口算題300道(全)
- 《干粉滅火器檢查卡》
- 校園監(jiān)控值班記錄表(共2頁(yè))
- 試樁施工方案 (完整版)
- 走中國(guó)工業(yè)化道路的思想及成就
- ESTIC-AU40使用說(shuō)明書(shū)(中文100版)(共138頁(yè))
- 河北省2012土建定額說(shuō)明及計(jì)算規(guī)則(含定額總說(shuō)明)解讀
- Prolog語(yǔ)言(耐心看完-你就入門了)
- 保霸線外加電流深井陽(yáng)極地床陰極保護(hù)工程施工方案
- 藍(lán)色商務(wù)大氣感恩同行集團(tuán)公司20周年慶典PPT模板
評(píng)論
0/150
提交評(píng)論