版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
福建省泉州一中2024年高三“停課不停學”階段性檢測試題數(shù)學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.2020年是脫貧攻堅決戰(zhàn)決勝之年,某市為早日實現(xiàn)目標,現(xiàn)將甲、乙、丙、丁4名干部派遺到、、三個貧困縣扶貧,要求每個貧困縣至少分到一人,則甲被派遣到縣的分法有()A.6種 B.12種 C.24種 D.36種2.若,則“”的一個充分不必要條件是A. B.C.且 D.或3.年初,湖北出現(xiàn)由新型冠狀病毒引發(fā)的肺炎.為防止病毒蔓延,各級政府相繼啟動重大突發(fā)公共衛(wèi)生事件一級響應,全國人心抗擊疫情.下圖表示月日至月日我國新型冠狀病毒肺炎單日新增治愈和新增確診病例數(shù),則下列中表述錯誤的是()A.月下旬新增確診人數(shù)呈波動下降趨勢B.隨著全國醫(yī)療救治力度逐漸加大,月下旬單日治愈人數(shù)超過確診人數(shù)C.月日至月日新增確診人數(shù)波動最大D.我國新型冠狀病毒肺炎累計確診人數(shù)在月日左右達到峰值4.對于正在培育的一顆種子,它可能1天后發(fā)芽,也可能2天后發(fā)芽,….下表是20顆不同種子發(fā)芽前所需培育的天數(shù)統(tǒng)計表,則這組種子發(fā)芽所需培育的天數(shù)的中位數(shù)是()發(fā)芽所需天數(shù)1234567種子數(shù)43352210A.2 B.3 C.3.5 D.45.設F為雙曲線C:(a>0,b>0)的右焦點,O為坐標原點,以OF為直徑的圓與圓x2+y2=a2交于P、Q兩點.若|PQ|=|OF|,則C的離心率為A. B.C.2 D.6.射線測厚技術(shù)原理公式為,其中分別為射線穿過被測物前后的強度,是自然對數(shù)的底數(shù),為被測物厚度,為被測物的密度,是被測物對射線的吸收系數(shù).工業(yè)上通常用镅241()低能射線測量鋼板的厚度.若這種射線對鋼板的半價層厚度為0.8,鋼的密度為7.6,則這種射線的吸收系數(shù)為()(注:半價層厚度是指將已知射線強度減弱為一半的某種物質(zhì)厚度,,結(jié)果精確到0.001)A.0.110 B.0.112 C. D.7.函數(shù)的圖象大致為()A. B.C. D.8.已知圓與拋物線的準線相切,則的值為()A.1 B.2 C. D.49.劉徽是我國魏晉時期偉大的數(shù)學家,他在《九章算術(shù)》中對勾股定理的證明如圖所示.“勾自乘為朱方,股自乘為青方,令出入相補,各從其類,因就其余不移動也.合成弦方之冪,開方除之,即弦也”.已知圖中網(wǎng)格紙上小正方形的邊長為1,其中“正方形為朱方,正方形為青方”,則在五邊形內(nèi)隨機取一個點,此點取自朱方的概率為()A. B. C. D.10.設集合A={y|y=2x﹣1,x∈R},B={x|﹣2≤x≤3,x∈Z},則A∩B=()A.(﹣1,3] B.[﹣1,3] C.{0,1,2,3} D.{﹣1,0,1,2,3}11.甲、乙兩名學生的六次數(shù)學測驗成績(百分制)的莖葉圖如圖所示.①甲同學成績的中位數(shù)大于乙同學成績的中位數(shù);②甲同學的平均分比乙同學的平均分高;③甲同學的平均分比乙同學的平均分低;④甲同學成績的方差小于乙同學成績的方差.以上說法正確的是()A.③④ B.①② C.②④ D.①③④12.如圖,在中,點為線段上靠近點的三等分點,點為線段上靠近點的三等分點,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.的展開式中,x5的系數(shù)是_________.(用數(shù)字填寫答案)14.已知圓C:經(jīng)過拋物線E:的焦點,則拋物線E的準線與圓C相交所得弦長是__________.15.已知等比數(shù)列的各項都是正數(shù),且成等差數(shù)列,則=__________.16.某次足球比賽中,,,,四支球隊進入了半決賽.半決賽中,對陣,對陣,獲勝的兩隊進入決賽爭奪冠軍,失利的兩隊爭奪季軍.已知他們之間相互獲勝的概率如下表所示.獲勝概率—0.40.30.8獲勝概率0.6—0.70.5獲勝概率0.70.3—0.3獲勝概率0.20.50.7—則隊獲得冠軍的概率為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)數(shù)列滿足.(1)求數(shù)列的通項公式;(2)設,為的前n項和,求證:.18.(12分)已知數(shù)列的前項和為,且點在函數(shù)的圖像上;(1)求數(shù)列的通項公式;(2)設數(shù)列滿足:,,求的通項公式;(3)在第(2)問的條件下,若對于任意的,不等式恒成立,求實數(shù)的取值范圍;19.(12分)設橢圓的左右焦點分別為,離心率是,動點在橢圓上運動,當軸時,.(1)求橢圓的方程;(2)延長分別交橢圓于點(不重合).設,求的最小值.20.(12分)已知的內(nèi)角、、的對邊分別為、、,滿足.有三個條件:①;②;③.其中三個條件中僅有兩個正確,請選出正確的條件完成下面兩個問題:(1)求;(2)設為邊上一點,且,求的面積.21.(12分)如圖,在四棱柱中,平面平面,是邊長為2的等邊三角形,,,,點為的中點.(Ⅰ)求證:平面;(Ⅱ)求二面角的余弦值.(Ⅲ)在線段上是否存在一點,使直線與平面所成的角正弦值為,若存在求出的長,若不存在說明理由.22.(10分)已知橢圓,過的直線與橢圓相交于兩點,且與軸相交于點.(1)若,求直線的方程;(2)設關(guān)于軸的對稱點為,證明:直線過軸上的定點.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
分成甲單獨到縣和甲與另一人一同到縣兩種情況進行分類討論,由此求得甲被派遣到縣的分法數(shù).【詳解】如果甲單獨到縣,則方法數(shù)有種.如果甲與另一人一同到縣,則方法數(shù)有種.故總的方法數(shù)有種.故選:B【點睛】本小題主要考查簡答排列組合的計算,屬于基礎題.2、C【解析】,∴,當且僅當時取等號.故“且”是“”的充分不必要條件.選C.3、D【解析】
根據(jù)新增確診曲線的走勢可判斷A選項的正誤;根據(jù)新增確診曲線與新增治愈曲線的位置關(guān)系可判斷B選項的正誤;根據(jù)月日至月日新增確診曲線的走勢可判斷C選項的正誤;根據(jù)新增確診人數(shù)的變化可判斷D選項的正誤.綜合可得出結(jié)論.【詳解】對于A選項,由圖象可知,月下旬新增確診人數(shù)呈波動下降趨勢,A選項正確;對于B選項,由圖象可知,隨著全國醫(yī)療救治力度逐漸加大,月下旬單日治愈人數(shù)超過確診人數(shù),B選項正確;對于C選項,由圖象可知,月日至月日新增確診人數(shù)波動最大,C選項正確;對于D選項,在月日及以前,我國新型冠狀病毒肺炎新增確診人數(shù)大于新增治愈人數(shù),我國新型冠狀病毒肺炎累計確診人數(shù)不在月日左右達到峰值,D選項錯誤.故選:D.【點睛】本題考查統(tǒng)計圖表的應用,考查數(shù)據(jù)處理能力,屬于基礎題.4、C【解析】
根據(jù)表中數(shù)據(jù),即可容易求得中位數(shù).【詳解】由圖表可知,種子發(fā)芽天數(shù)的中位數(shù)為,故選:C.【點睛】本題考查中位數(shù)的計算,屬基礎題.5、A【解析】
準確畫圖,由圖形對稱性得出P點坐標,代入圓的方程得到c與a關(guān)系,可求雙曲線的離心率.【詳解】設與軸交于點,由對稱性可知軸,又,為以為直徑的圓的半徑,為圓心.,又點在圓上,,即.,故選A.【點睛】本題為圓錐曲線離心率的求解,難度適中,審題時注意半徑還是直徑,優(yōu)先考慮幾何法,避免代數(shù)法從頭至尾,運算繁瑣,準確率大大降低,雙曲線離心率問題是圓錐曲線中的重點問題,需強化練習,才能在解決此類問題時事半功倍,信手拈來.6、C【解析】
根據(jù)題意知,,代入公式,求出即可.【詳解】由題意可得,因為,所以,即.所以這種射線的吸收系數(shù)為.故選:C【點睛】本題主要考查知識的遷移能力,把數(shù)學知識與物理知識相融合;重點考查指數(shù)型函數(shù),利用指數(shù)的相關(guān)性質(zhì)來研究指數(shù)型函數(shù)的性質(zhì),以及解指數(shù)型方程;屬于中檔題.7、A【解析】
確定函數(shù)在定義域內(nèi)的單調(diào)性,計算時的函數(shù)值可排除三個選項.【詳解】時,函數(shù)為減函數(shù),排除B,時,函數(shù)也是減函數(shù),排除D,又時,,排除C,只有A可滿足.故選:A.【點睛】本題考查由函數(shù)解析式選擇函數(shù)圖象,可通過解析式研究函數(shù)的性質(zhì),如奇偶性、單調(diào)性、對稱性等等排除,可通過特殊的函數(shù)值,函數(shù)值的正負,函數(shù)值的變化趨勢排除,最后剩下的一個即為正確選項.8、B【解析】
因為圓與拋物線的準線相切,則圓心為(3,0),半徑為4,根據(jù)相切可知,圓心到直線的距離等于半徑,可知的值為2,選B.【詳解】請在此輸入詳解!9、C【解析】
首先明確這是一個幾何概型面積類型,然后求得總事件的面積和所研究事件的面積,代入概率公式求解.【詳解】因為正方形為朱方,其面積為9,五邊形的面積為,所以此點取自朱方的概率為.故選:C【點睛】本題主要考查了幾何概型的概率求法,還考查了數(shù)形結(jié)合的思想和運算求解的能力,屬于基礎題.10、C【解析】
先求集合A,再用列舉法表示出集合B,再根據(jù)交集的定義求解即可.【詳解】解:∵集合A={y|y=2x﹣1,x∈R}={y|y>﹣1},B={x|﹣2≤x≤3,x∈Z}={﹣2,﹣1,0,1,2,3},∴A∩B={0,1,2,3},故選:C.【點睛】本題主要考查集合的交集運算,屬于基礎題.11、A【解析】
由莖葉圖中數(shù)據(jù)可求得中位數(shù)和平均數(shù),即可判斷①②③,再根據(jù)數(shù)據(jù)集中程度判斷④.【詳解】由莖葉圖可得甲同學成績的中位數(shù)為,乙同學成績的中位數(shù)為,故①錯誤;,,則,故②錯誤,③正確;顯然甲同學的成績更集中,即波動性更小,所以方差更小,故④正確,故選:A【點睛】本題考查由莖葉圖分析數(shù)據(jù)特征,考查由莖葉圖求中位數(shù)、平均數(shù).12、B【解析】
,將,代入化簡即可.【詳解】.故選:B.【點睛】本題考查平面向量基本定理的應用,涉及到向量的線性運算、數(shù)乘運算,考查學生的運算能力,是一道中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、-189【解析】由二項式定理得,令r=5得x5的系數(shù)是.14、【解析】
求出拋物線的焦點坐標,代入圓的方程,求出的值,再求出準線方程,利用點到直線的距離公式,求出弦心距,利用勾股定理可以求出弦長的一半,進而求出弦長.【詳解】拋物線E:的準線為,焦點為(0,1),把焦點的坐標代入圓的方程中,得,所以圓心的坐標為,半徑為5,則圓心到準線的距離為1,所以弦長.【點睛】本題考查了拋物線的準線、圓的弦長公式.15、【解析】
根據(jù)等差中項性質(zhì),結(jié)合等比數(shù)列通項公式即可求得公比;代入表達式,結(jié)合對數(shù)式的化簡即可求解.【詳解】等比數(shù)列的各項都是正數(shù),且成等差數(shù)列,則,由等比數(shù)列通項公式可知,所以,解得或(舍),所以由對數(shù)式運算性質(zhì)可得,故答案為:.【點睛】本題考查了等差數(shù)列通項公式的簡單應用,等比數(shù)列通項公式的用法,對數(shù)式的化簡運算,屬于中檔題.16、0.18【解析】
根據(jù)表中信息,可得勝C的概率;分類討論B或D進入決賽,再計算A勝B或A勝C的概率即可求解.【詳解】由表中信息可知,勝C的概率為;若B進入決賽,B勝D的概率為,則A勝B的概率為;若D進入決賽,D勝B的概率為,則A勝D的概率為;由相應的概率公式知,則A獲得冠軍的概率為.故答案為:0.18【點睛】本題考查了獨立事件的概率應用,互斥事件的概率求法,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析【解析】
(1)利用與的關(guān)系即可求解.(2)利用裂項求和法即可求解.【詳解】解析:(1)當時,;當,,可得,又∵當時也成立,;(2),【點睛】本題主要考查了與的關(guān)系、裂項求和法,屬于基礎題.18、(1)(2)當n為偶數(shù)時,;當n為奇數(shù)時,.(3)【解析】
(1)根據(jù),討論與兩種情況,即可求得數(shù)列的通項公式;(2)由(1)利用遞推公式及累加法,即可求得當n為奇數(shù)或偶數(shù)時的通項公式.也可利用數(shù)學歸納法,先猜想出通項公式,再用數(shù)學歸納法證明.(3)分類討論,當n為奇數(shù)或偶數(shù)時,分別求得的最大值,即可求得的取值范圍.【詳解】(1)由題意可知,.當時,,當時,也滿足上式.所以.(2)解法一:由(1)可知,即.當時,,①當時,,所以,②當時,,③當時,,所以,④……當時,n為偶數(shù)當時,n為偶數(shù)所以以上個式子相加,得.又,所以當n為偶數(shù)時,.同理,當n為奇數(shù)時,,所以,當n為奇數(shù)時,.解法二:猜測:當n為奇數(shù)時,.猜測:當n為偶數(shù)時,.以下用數(shù)學歸納法證明:,命題成立;假設當時,命題成立;當n為奇數(shù)時,,當時,n為偶數(shù),由得故,時,命題也成立.綜上可知,當n為奇數(shù)時同理,當n為偶數(shù)時,命題仍成立.(3)由(2)可知.①當n為偶數(shù)時,,所以隨n的增大而減小從而當n為偶數(shù)時,的最大值是.②當n為奇數(shù)時,,所以隨n的增大而增大,且.綜上,的最大值是1.因此,若對于任意的,不等式恒成立,只需,故實數(shù)的取值范圍是.【點睛】本題考查了累加法求數(shù)列通項公式的應用,分類討論奇偶項的通項公式及求和方法,數(shù)學歸納法證明數(shù)列的應用,數(shù)列的單調(diào)性及參數(shù)的取值范圍,屬于難題.19、(1);(2)【解析】
(1)根據(jù)題意直接計算得到,,得到橢圓方程.(2)不妨設,且,設,代入數(shù)據(jù)化簡得到,故,得到答案.【詳解】(1),所以,,化簡得,所以,,所以方程為;(2)由題意得,不在軸上,不妨設,且,設,所以由,得,所以,由,得,代入,化簡得:,由于,所以,同理可得,所以,所以當時,最小為【點睛】本題考查了橢圓方程,橢圓中的向量運算和最值,意在考查學生的計算能力和綜合應用能力.20、(1);(2).【解析】
(1)先求出角,進而可得出,則①②中有且只有一個正確,③正確,然后分①③正確和②③正確兩種情況討論,結(jié)合三角形的面積公式和余弦定理可求得的值;(2)計算出和,計算出,可得出,進而可求得的面積.【詳解】(1)因為,所以,得,,,為鈍角,與矛盾,故①②中僅有一個正確,③正確.顯然,得.當①③正確時,由,得(無解);當②③正確時,由于,,得;(2)如圖,因為,,則,則,.【點睛】本題考查解三角形綜合應用,涉及三角形面積公式和余弦定理的應用,考查計算能力,屬于中等題.21、(Ⅰ)證明見解析;(Ⅱ);(Ⅲ)線段上是存在一點,,使直線與平面所成的角正弦值為.【解析】
(Ⅰ)取中點,連結(jié)、,推導出四邊形是平行四邊形,從而,由此能證明平面;(Ⅱ)取中點,連結(jié),,推導出平面,,以為原點,為軸,為軸,為軸,建立空間直角坐標系,利用向量法能求出二面角的余弦值;(Ⅲ)假設在線段上是存在一點,使直線與平面所成的角正弦值為,設.利用向量法能求出結(jié)果.【詳解】(Ⅰ)證明:取中點,連結(jié)、,是邊長為2的等邊三角形,,,,點為的中點,,四邊形是平
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 建筑工程公司文員崗位職責(3篇)
- 消防安全常記心間的廣播稿(34篇)
- 新教材高考地理二輪復習綜合題專項訓練二原因分析類含答案
- 測量初步與簡單機械運動(原卷版)-2023年中考物理二輪復習專練
- 山東省德州禹城市2024-2025學年五年級上學期期中考試科學試題
- 河北省保定市阜平縣2024-2025學年八年級上學期期中生物學試題(含答案)
- 2024-2025學年福建省漳州市十校聯(lián)盟高二上學期期中質(zhì)量檢測聯(lián)考數(shù)學試卷(含答案)
- 《機械設計基礎》 劉文光 習題解答
- 機動車買賣協(xié)議范本
- 山西建筑材料銷售合同
- 人教版小學數(shù)學六年級上冊《百分數(shù)的認識》課件
- 2024年新人教版數(shù)學七年級上冊教學課件 4.1 第1課時 單項式
- 2024國家臨床重點專科申報書(臨床版)
- 2023中國人工智能系列白皮書-大模型技術(shù)(2023版)
- (附答案)2024公需課《百縣千鎮(zhèn)萬村高質(zhì)量發(fā)展工程與城鄉(xiāng)區(qū)域協(xié)調(diào)發(fā)展》試題廣東公需科
- D500-D505 2016年合訂本防雷與接地圖集
- 《史記》上冊注音版
- GB/T 6807-2001鋼鐵工件涂裝前磷化處理技術(shù)條件
- 年產(chǎn)1000噸淀粉酶生產(chǎn)工藝設計
- PPH術(shù)后摘除殘留釘減少肛內(nèi)墜脹性并發(fā)癥的臨床研究
- 公司SOP標準流程之采購作業(yè)流程
評論
0/150
提交評論