版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
人教A版(新教材)高中數(shù)學(xué)選擇性必修第一冊PAGEPAGE1§1.2空間向量基本定理第1課時空間向量基本定理學(xué)習(xí)目標(biāo)1.掌握空間向量基本定理.2.會用空間向量基本定理對向量進行分解.知識點一空間向量基本定理如果三個向量a,b,c不共面,那么對任意一個空間向量p,存在唯一的有序?qū)崝?shù)組(x,y,z),使得p=xa+yb+zc.我們把{a,b,c}叫做空間的一個基底,a,b,c都叫做基向量.思考零向量能否作為基向量?〖答案〗不能.零向量與任意兩個向量a,b都共面.知識點二空間向量的正交分解1.單位正交基底如果空間的一個基底中的三個基向量兩兩垂直,且長度都是1,那么這個基底叫做單位正交基底,常用{i,j,k}表示.2.向量的正交分解由空間向量基本定理可知,對空間任一向量a,均可以分解為三個向量xi,yj,zk使得a=xi+yj+zk.像這樣把一個空間向量分解為三個兩兩垂直的向量,叫做把空間向量進行正交分解.1.只有兩兩垂直的三個向量才能作為空間的一個基底.(×)2.若{a,b,c}為空間的一個基底,則a,b,c全不是零向量.(√)3.如果向量a,b與任何向量都不能構(gòu)成空間的一個基底,則一定有a與b共線.(√)4.對于三個不共面向量a1,a2,a3,不存在實數(shù)組(x,y,z),使0=xa1+ya2+za3.(×)一、空間的基底例1已知{e1,e2,e3}是空間的一個基底,且eq\o(OA,\s\up6(→))=e1+2e2-e3,eq\o(OB,\s\up6(→))=-3e1+e2+2e3,eq\o(OC,\s\up6(→))=e1+e2-e3,試判斷{eq\o(OA,\s\up6(→)),eq\o(OB,\s\up6(→)),eq\o(OC,\s\up6(→))}能否作為空間的一個基底.解假設(shè)eq\o(OA,\s\up6(→)),eq\o(OB,\s\up6(→)),eq\o(OC,\s\up6(→))共面.則存在實數(shù)λ,μ使得eq\o(OA,\s\up6(→))=λeq\o(OB,\s\up6(→))+μeq\o(OC,\s\up6(→)),∴e1+2e2-e3=λ(-3e1+e2+2e3)+μ(e1+e2-e3)=(-3λ+μ)e1+(λ+μ)e2+(2λ-μ)e3,∵e1,e2,e3不共面,∴eq\b\lc\{\rc\(\a\vs4\al\co1(-3λ+μ=1,,λ+μ=2,,2λ-μ=-1))此方程組無解,∴eq\o(OA,\s\up6(→)),eq\o(OB,\s\up6(→)),eq\o(OC,\s\up6(→))不共面,∴{eq\o(OA,\s\up6(→)),eq\o(OB,\s\up6(→)),eq\o(OC,\s\up6(→))}可以作為空間的一個基底.反思感悟基底的判斷思路(1)判斷一組向量能否作為空間的一個基底,實質(zhì)是判斷這三個向量是否共面,若不共面,就可以作為一個基底.(2)判斷基底時,常常依托正方體、長方體、平行六面體、四面體等幾何體,用它們從同一頂點出發(fā)的三條棱對應(yīng)的向量為基底,并在此基礎(chǔ)上構(gòu)造其他向量進行相關(guān)的判斷.跟蹤訓(xùn)練1(1)設(shè)x=a+b,y=b+c,z=c+a,且{a,b,c}是空間的一個基底,給出下列向量組:①{a,b,x},②{b,c,z},③{x,y,a+b+c},其中可以作為空間一個基底的向量組有()A.1個 B.2個C.3個 D.0個〖答案〗B〖解析〗因為x=a+b,所以向量x,a,b共面.如圖,令a=eq\o(AB,\s\up6(→)),b=eq\o(AA1,\s\up6(→)),c=eq\o(AD,\s\up6(→)),則x=eq\o(AB1,\s\up6(→)),y=eq\o(AD1,\s\up6(→)),z=eq\o(AC,\s\up6(→)),a+b+c=eq\o(AC1,\s\up6(→)).可知向量b,c,z和x,y,a+b+c不共面,故選B.(2)已知空間的一個基底{a,b,c},m=a-b+c,n=xa+yb+c,若m與n共線,則x+y=________.〖答案〗0〖解析〗因為m與n共線,所以xa+yb+c=z(a-b+c).所以eq\b\lc\{\rc\(\a\vs4\al\co1(x=z,,y=-z,,1=z.))所以eq\b\lc\{\rc\(\a\vs4\al\co1(x=1,,y=-1.))所以x+y=0.二、空間向量基本定理例2如圖,在三棱柱ABC-A′B′C′中,已知eq\o(AA′,\s\up6(→))=a,eq\o(AB,\s\up6(→))=b,eq\o(AC,\s\up6(→))=c,點M,N分別是BC′,B′C′的中點,試用基底{a,b,c}表示向量eq\o(AM,\s\up6(→)),eq\o(AN,\s\up6(→)).解連接A′N(圖略).eq\o(AM,\s\up6(→))=eq\o(AB,\s\up6(→))+eq\f(1,2)eq\o(BC′,\s\up6(→))=eq\o(AB,\s\up6(→))+eq\f(1,2)(eq\o(BC,\s\up6(→))+eq\o(CC′,\s\up6(→)))=eq\o(AB,\s\up6(→))+eq\f(1,2)eq\o(BC,\s\up6(→))+eq\f(1,2)eq\o(CC′,\s\up6(→))=eq\o(AB,\s\up6(→))+eq\f(1,2)(eq\o(AC,\s\up6(→))-eq\o(AB,\s\up6(→)))+eq\f(1,2)eq\o(AA′,\s\up6(→))=eq\f(1,2)eq\o(AB,\s\up6(→))+eq\f(1,2)eq\o(AC,\s\up6(→))+eq\f(1,2)eq\o(AA′,\s\up6(→))=eq\f(1,2)(a+b+c).eq\o(AN,\s\up6(→))=eq\o(AA′,\s\up6(→))+eq\o(A′N,\s\up6(→))=eq\o(AA′,\s\up6(→))+eq\f(1,2)(eq\o(A′B′,\s\up6(→))+eq\o(A′C′,\s\up6(→)))=eq\o(AA′,\s\up6(→))+eq\f(1,2)(eq\o(AB,\s\up6(→))+eq\o(AC,\s\up6(→)))=a+eq\f(1,2)b+eq\f(1,2)c.延伸探究若把本例中“eq\o(AA′,\s\up6(→))=a”改為“eq\o(AC′,\s\up6(→))=a”,其他條件不變,則結(jié)果是什么?解因為M為BC′的中點,N為B′C′的中點,所以eq\o(AM,\s\up6(→))=eq\f(1,2)(eq\o(AB,\s\up6(→))+eq\o(AC′,\s\up6(→)))=eq\f(1,2)a+eq\f(1,2)b.eq\o(AN,\s\up6(→))=eq\f(1,2)(eq\o(AB′,\s\up6(→))+eq\o(AC′,\s\up6(→)))=eq\f(1,2)(eq\o(AB,\s\up6(→))+eq\o(BB′,\s\up6(→))+eq\o(AC′,\s\up6(→)))=eq\f(1,2)eq\o(AB,\s\up6(→))+eq\f(1,2)eq\o(CC′,\s\up6(→))+eq\f(1,2)eq\o(AC′,\s\up6(→))=eq\f(1,2)eq\o(AB,\s\up6(→))+eq\f(1,2)(eq\o(AC′,\s\up6(→))-eq\o(AC,\s\up6(→)))+eq\f(1,2)eq\o(AC′,\s\up6(→))=eq\f(1,2)eq\o(AB,\s\up6(→))+eq\o(AC′,\s\up6(→))-eq\f(1,2)eq\o(AC,\s\up6(→))=eq\f(1,2)b+a-eq\f(1,2)c.反思感悟用基底表示向量的步驟(1)定基底:根據(jù)已知條件,確定三個不共面的向量構(gòu)成空間的一個基底.(2)找目標(biāo):用確定的基底(或已知基底)表示目標(biāo)向量,需要根據(jù)三角形法則及平行四邊形法則,結(jié)合相等向量的代換、向量的運算進行變形、化簡,最后求出結(jié)果.(3)下結(jié)論:利用空間的一個基底{a,b,c}可以表示出空間所有向量.表示要徹底,結(jié)果中只能含有a,b,c,不能含有其他形式的向量.跟蹤訓(xùn)練2如圖,四棱錐P-OABC的底面為一矩形,PO⊥平面OABC,設(shè)eq\o(OA,\s\up6(→))=a,eq\o(OC,\s\up6(→))=b,eq\o(OP,\s\up6(→))=c,E,F(xiàn)分別是PC和PB的中點,試用a,b,c表示eq\o(BF,\s\up6(→)),eq\o(BE,\s\up6(→)),eq\o(AE,\s\up6(→)),eq\o(EF,\s\up6(→)).解連接BO,則eq\o(BF,\s\up6(→))=eq\f(1,2)eq\o(BP,\s\up6(→))=eq\f(1,2)(eq\o(BO,\s\up6(→))+eq\o(OP,\s\up6(→)))=eq\f(1,2)(eq\o(BA,\s\up6(→))+eq\o(AO,\s\up6(→))+eq\o(OP,\s\up6(→)))=eq\f(1,2)(c-b-a)=-eq\f(1,2)a-eq\f(1,2)b+eq\f(1,2)c.eq\o(BE,\s\up6(→))=eq\o(BC,\s\up6(→))+eq\o(CE,\s\up6(→))=-a+eq\f(1,2)eq\o(CP,\s\up6(→))=-a+eq\f(1,2)(eq\o(CO,\s\up6(→))+eq\o(OP,\s\up6(→)))=-a-eq\f(1,2)b+eq\f(1,2)c.eq\o(AE,\s\up6(→))=eq\o(AP,\s\up6(→))+eq\o(PE,\s\up6(→))=eq\o(AO,\s\up6(→))+eq\o(OP,\s\up6(→))+eq\f(1,2)(eq\o(PO,\s\up6(→))+eq\o(OC,\s\up6(→)))=-a+c+eq\f(1,2)(-c+b)=-a+eq\f(1,2)b+eq\f(1,2)c.eq\o(EF,\s\up6(→))=eq\f(1,2)eq\o(CB,\s\up6(→))=eq\f(1,2)eq\o(OA,\s\up6(→))=eq\f(1,2)a.1.下列結(jié)論錯誤的是()A.三個非零向量能構(gòu)成空間的一個基底,則它們不共面B.兩個非零向量與任何一個向量都不能構(gòu)成空間的一個基底,則這兩個向量共線C.若a,b是兩個不共線的向量,且c=λa+μb(λ,μ∈R且λμ≠0),則{a,b,c}構(gòu)成空間的一個基底D.若eq\o(OA,\s\up6(→)),eq\o(OB,\s\up6(→)),eq\o(OC,\s\up6(→))不能構(gòu)成空間的一個基底,則O,A,B,C四點共面〖答案〗C〖解析〗由基底的概念可知A,B,D正確,對于C,因為滿足c=λa+μb,所以a,b,c共面,不能構(gòu)成基底,故錯誤.2.已知a,b,c是不共面的三個向量,則能構(gòu)成空間的一個基底的一組向量是()A.3a,a-b,a+2b B.2b,b-2a,b+2aC.a(chǎn),2b,b-c D.c,a+c,a-c〖答案〗C〖解析〗對于A,有3a=2(a-b)+a+2b,則3a,a-b,a+2b共面,不能作為基底;同理可判斷B,D中的向量共面.故選C.3.在長方體ABCD-A1B1C1D1中,可以作為空間一個基底的是()A.eq\o(AB,\s\up6(→)),eq\o(AC,\s\up6(→)),eq\o(AD,\s\up6(→)) B.eq\o(AB,\s\up6(→)),eq\o(AA1,\s\up6(→)),eq\o(AB1,\s\up6(→))C.eq\o(D1A1,\s\up6(→)),eq\o(D1C1,\s\up6(→)),eq\o(D1D,\s\up6(→)) D.eq\o(AC1,\s\up6(→)),eq\o(A1C,\s\up6(→)),eq\o(CC1,\s\up6(→))〖答案〗C〖解析〗在長方體ABCD-A1B1C1D1中,只有C中的三個向量eq\o(D1A1,\s\up6(→)),eq\o(D1C1,\s\up6(→)),eq\o(D1D,\s\up6(→))不共面,可以作為空間的一個基底.4.正方體ABCD-A′B′C′D′中,O1,O2,O3分別是AC,AB′,AD′的中點,以{eq\o(AO1,\s\up6(→)),eq\o(AO2,\s\up6(→)),eq\o(AO3,\s\up6(→))}為基底,eq\o(AC′,\s\up6(→))=xeq\o(AO1,\s\up6(→))+yeq\o(AO2,\s\up6(→))+zeq\o(AO3,\s\up6(→)),則()A.x=y(tǒng)=z=eq\f(1,2) B.x=y(tǒng)=z=1C.x=y(tǒng)=z=eq\f(\r(2),2) D.x=y(tǒng)=z=2〖答案〗B〖解析〗eq\o(AC′,\s\up6(→))=eq\o(AB,\s\up6(→))+eq\o(BC′,\s\up6(→))=eq\o(AB,\s\up6(→))+eq\o(BB′,\s\up6(→))+eq\o(BC,\s\up6(→))=eq\o(AB,\s\up6(→))+eq\o(AA′,\s\up6(→))+eq\o(AD,\s\up6(→))=eq\f(1,2)(eq\o(AB,\s\up6(→))+eq\o(AD,\s\up6(→)))+eq\f(1,2)(eq\o(AB,\s\up6(→))+eq\o(AA′,\s\up6(→)))+eq\f(1,2)(eq\o(AA′,\s\up6(→))+eq\o(AD,\s\up6(→)))=eq\f(1,2)eq\o(AC,\s\up6(→))+eq\f(1,2)eq\o(AB′,\s\up6(→))+eq\f(1,2)eq\o(AD′,\s\up6(→))=eq\o(AO1,\s\up6(→))+eq\o(AO2,\s\up6(→))+eq\o(AO3,\s\up6(→)),對比eq\o(AC′,\s\up6(→))=xeq\o(AO1,\s\up6(→))+yeq\o(AO2,\s\up6(→))+zeq\
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年工程促成居間合同集錦
- 2024年工程助理勞務(wù)合作協(xié)議
- 2024丙丁雙方關(guān)于虛擬現(xiàn)實技術(shù)開發(fā)與應(yīng)用合同
- 2024年嚴(yán)馳鄭黛共同發(fā)起的公益項目捐贈合同
- 井區(qū)安全員年終個人述職匯報-述職報告范文
- 2024年廣告效果監(jiān)測與評估合同
- 2024年度石油天然氣管道建設(shè)合同
- 2024年度網(wǎng)頁美工設(shè)計外包合同
- 2024年度圖書訂閱合同
- 2024年度旅游管理與服務(wù)合同
- 裝修垃圾清運處置方案
- JC-T 2536-2019水泥-水玻璃灌漿材料
- 品牌授權(quán)協(xié)議書
- 藝術(shù)設(shè)計就業(yè)職業(yè)生涯規(guī)劃
- 《狙擊手》和《新神榜楊戩》電影賞析
- 槍庫應(yīng)急處置預(yù)案
- 老年患者術(shù)后譫妄的護理干預(yù)
- 《凸透鏡成像的規(guī)律》課件
- 倉庫管理中的客戶服務(wù)和溝通技巧
- 規(guī)劃選址及用地預(yù)審
- 土砂石料廠項目融資計劃書
評論
0/150
提交評論