山東省百師聯(lián)考2024-2025學(xué)年高三上學(xué)期期中考試數(shù)學(xué)試題_第1頁
山東省百師聯(lián)考2024-2025學(xué)年高三上學(xué)期期中考試數(shù)學(xué)試題_第2頁
山東省百師聯(lián)考2024-2025學(xué)年高三上學(xué)期期中考試數(shù)學(xué)試題_第3頁
山東省百師聯(lián)考2024-2025學(xué)年高三上學(xué)期期中考試數(shù)學(xué)試題_第4頁
山東省百師聯(lián)考2024-2025學(xué)年高三上學(xué)期期中考試數(shù)學(xué)試題_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024—2025學(xué)年高三期中考試數(shù)學(xué)試題1.答卷前,考生務(wù)必將自己的姓名、考場號、座位號、準考證號填寫在答題卡上.2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案標號.回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效.3.考試結(jié)束后,將本試卷和答題卡一并交回.考試時間為120分鐘,滿分150分一、選擇題:本題共8小題,每小題5分,共40分.在每小題給出的四個選項中,只有一項是符合題目要求的.1.集合,,則()A. B. C. D.2.“”是“”的()A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件3.設(shè)向量,,,且,則()A.3 B.2 C. D.4.已知某圓錐的軸截面為等邊三角形,且圓錐側(cè)面積為,則該圓錐的內(nèi)切球體積為()A. B. C. D.5.函數(shù)(,,)的部分圖象如圖所示,圖象上的所有點向左平移個單位長度得到函數(shù)的圖象.若對任意的都有,則圖中的值為()A. B. C. D.6.已知函數(shù)若方程恰有2個不相等的實數(shù)解,則的取值范圍是()A. B. C. D.7.已知函數(shù)為偶函數(shù),為奇函數(shù),且當時,,則()A.2 B. C.1 D.8.在平面直角坐標系內(nèi),方程對應(yīng)的曲線為橢圓,則該橢圓的焦距為()A. B. C. D.二、選擇題:本題共3小題,每小題6分,共18分.在每小題給出的選項中,有多項符合題目要求.全部選對的得6分,部分選對的得部分分,有選錯的得0分.9.已知方程的兩個復(fù)數(shù)根為,,則下列說法正確的有()A. B. C. D.10.設(shè)函數(shù),則()A.當時,的極大值大于0 B.當時,無極值點C.,使在上是減函數(shù) D.,曲線的對稱中心的橫坐標為定值11.已知曲線上的動點到點的距離與其到直線的距離相等,則A.曲線的軌跡方程為B.若,為曲線上的動點,則的最小值為5C.過點,恰有2條直線與曲線有且只有一個公共點D.圓與曲線交于,兩點,與直線交于,兩點,則,,,四點圍成的四邊形的周長為12三、填空題:本題共3小題,每小題5分,共15分.12.記為等差數(shù)列的前項和,若,,則______.13.曲線在點處的切線與拋物線相切,則______.14.已知雙曲線:(,)與平行于軸的動直線交于,兩點,點在點左側(cè),雙曲線的左焦點為,且當時,,則雙曲線的離心率是______;當直線運動時,延長至點使,連接交軸于點,則的值是______.(第一空2分,第二空3分)四、解答題:本題共5小題,共77分.解答應(yīng)寫出文字說明、證明過程或演算步驟.15.(13分)在中,內(nèi)角,,的對邊分別是,,,且滿足.(1)求角;(2)若,求周長的取值范圍.16.(15分)已知函數(shù).(1)若在上單調(diào)遞減,求實數(shù)的取值范圍;(2)若,證明:.17.(15分)如圖,在四棱錐中,底面是菱形,,分別為,的中點,平面,且.(1)證明:平面;(2)若與平面所成的角是,求二面角的余弦值.18.(17分)如圖,已知橢圓:()上的點到其左焦點的最大矩離和最小距離分別為和,斜率為的直線與橢圓相交于異于點的,兩點.(1)求橢圓的方程;(2)若,求直線的方程;(3)當直線,均不與軸垂直時,設(shè)直線的斜率為,直線的斜率為,求證:為定值.19.(17分)若有窮數(shù)列(且)滿足(),則稱為數(shù)列.(1)判斷下列數(shù)列是否為數(shù)列,并說明理由.①1,2,4,3;②4,2,8,1.(2)已知數(shù)列中各項互不相等,令(),求證:數(shù)列是等差數(shù)列的充分必要條件是數(shù)列是常數(shù)列.(3)已知數(shù)列是且個連續(xù)正整數(shù)1,2,…,的一個排列,若,求的所有取值.

2024—2025學(xué)年高三期中考試數(shù)學(xué)參考答案及評分意見1.D【解析】因為,,所以,.故選D.2.C【解析】當時,,或,,推不出;當時,必有,故“”是“”的必要不充分條件,故選C.3.A【解析】因為,,,所以;因為,所以,解得.故選A.4.B【解析】設(shè)圓錐的底面半徑為,則,所以.設(shè)圓錐的內(nèi)切球半徑為,又圓錐的軸截面為等邊三角形,所以,則內(nèi)切球的體積.故選B.5.A【解析】由,得.的圖象上的所有點向左平移個單位長度后得的圖象,由題意知為奇函數(shù),所以其圖象關(guān)于原點對稱,得函數(shù)的圖象過點.設(shè)的最小正周期為,則,所以,故.又,,且,可得,所以,.故選A.6.C【解析】當時,,由二次函數(shù)的性質(zhì)可知在上單調(diào)遞減,在上單調(diào)遞增.令,則,所以.當時,,,在上單調(diào)遞減.令,則.作出的大致圖象,如圖所示.方程恰有2個不相等的實數(shù)解,也就是的圖象與直線恰有兩個公共點.由圖易知所求的取值范圍是.故選C.7.C【解析】因為函數(shù)為偶函數(shù),所以,即函數(shù)的圖象關(guān)于直線對稱;因為函數(shù)為奇函數(shù),所以,即函數(shù)的圖象關(guān)于點中心對稱.又當時,,所以.故選C.8.C【解析】因為,將點的坐標代入方程,原方程保持不變,所以橢圓關(guān)于原點對稱;將點和的坐標分別代入方程,原方程保持不變,所以橢圓關(guān)于直線和對稱.設(shè)直線與橢圓交于,兩點,則解得或所以;設(shè)直線與橢圓交于,兩點,則解得或所以.由橢圓性質(zhì)可知,,,所以,,則,故焦距為.故選C.9.ACD【解析】方程的兩個復(fù)數(shù)根為,,由一元二次方程根與系數(shù)的關(guān)系得,,A,C正確;B選項,的兩個復(fù)數(shù)根為,若,,則,B錯誤;D選項,由B選項知,或,均有,D正確.故選ACD.10.BD【解析】對于A,當時,,求導(dǎo)得,令得或,由,得或,由,得,于是在,上單調(diào)遞增,在上單調(diào)遞減,在處取得極大值,極大值為,A錯誤;對于B,,當時,,即恒成立,函數(shù)在上單調(diào)遞增,無極值點,B正確;對于C,要使在上是減函數(shù),則恒成立,而不等式的解集不可能為,C錯誤;對于D,由,得曲線的對稱中心的坐標為,D正確.故選BD.11.ABD【解析】對于A,依題意,曲線是以為焦點,直線為準線的拋物線,方程為,A正確;對于B,如圖,過點作直線的垂線,交直線于,交拋物線于.令點到直線的距離為,則,當且僅當點與點重合時取等號,因此的最小值為,B正確;對于C,顯然過點與曲線有且只有一個公共點的直線的斜率存在,設(shè)其方程為,由消去得,當時,直線與拋物線僅有一個公共點,當時,由,解得,顯然直線,均與拋物線僅有一個公共點,因此過點與曲線有且只有一個公共點的直線有3條,C錯誤;對于D,直線交圓于點,,由得或從而,,所以四邊形是矩形,其周長為,D正確.故選ABD.12.8【解析】設(shè)等差數(shù)列的公差為,因為,,即解得則,所以.故答案為8.13.1【解析】設(shè),則,則,所以曲線在點處的切線方程為,即.由消去,得,由,得.故答案為1.14.【解析】當時,設(shè),則,解得.又,所以,又,所以,兩邊同時除以,得,解得或(舍).如圖,因為,所以,設(shè),則,,,,所以,又,所以.15.解:(1)由及正弦定理得,故,所以.因為,,所以,因為,所以.(2)由(1)可知,,由余弦定理,得,又,所以.由基本不等式得:,即,所以,當且僅當時,等號成立.又,即,又,所以,所以,即周長的取值范圍是.16.(1)解:,,則.因為在上單調(diào)遞減,所以在上恒成立,即在上恒成立.構(gòu)造函數(shù)(),則,令,解得.當時,;當時,,所以在區(qū)間(0,1)上單調(diào)遞增,在區(qū)間上單調(diào)遞減,所以當時,取得極大值,也是最大值,即.所以,即的取值范圍為.(2)證明:方法一:由題意得的定義域為,當時,要證,即證,等價于證明.構(gòu)造函數(shù)(),即證.因為,令,因為函數(shù)圖象的對稱軸為直線,所以在上單調(diào)遞增,且,,所以存在,使得,所以當時,;當時,,,所以在上單調(diào)遞減,在上單調(diào)遞增,所以當時,取得極小值,也是最小值,即().又因為,得,所以().令,,則在上恒成立,所以在上單調(diào)遞減,所以當時,,所以,即,所以.方法二:將看作以為變量的函數(shù),其中,因為,所以關(guān)于單調(diào)遞減.要證當時,,即證當時,,只需證當時,.令,則,令,解得.當變化時,,的變化情況如下表:-0+單調(diào)遞減單調(diào)遞增所以.綜上,.,,即.17.(1)證明:如圖,設(shè)的中點為,連接,,則且.又且,所以,,所以四邊形為平行四邊形,則.又因為平面平面,所以平面.(2)解:如圖,取的中點,連接,取的中點,連接,,則且,又,所以.因為平面,所以平面,故與平面所成的角為,所以.所以在中,.又由菱形性質(zhì)可得,所以,所以.所以,所以,,兩兩垂直.10分以點為坐標原點,直線,,分別為,,軸,建立如圖所示的空間直角坐標系.因為,所以,,,,,,所以,,.由平面得平面的一個法向量為.設(shè)平面的一個法向量為,則故取,則,所以為平面的一個法向量.設(shè)二面角的平面角為,由圖可得為銳角,所以,所以二面角的余弦值為.18.(1)解:由橢圓:上的點到其左焦點的最大距離和最小距離分別為和,結(jié)合橢圓的幾何性質(zhì),得解得則,故橢圓的方程為.(2)解:設(shè)直線的方程為,,.由消去,整理得.由,得,則,.,解得或.10分當時,直線的方程為,此時直線過點;當時,直線的方程為,滿足題目條件.所以直線的方程為.(3)證明:因為直線,均不與軸垂直,所以直線:不經(jīng)過點和,則且,由(2)可知,,為定值.19.(1)解:①因為,所以數(shù)列1,2,4,3不是數(shù)列;②因為,所以數(shù)列4,2,8,1是數(shù)列.(2)證明:必要性:若數(shù)列是等差數(shù)列,設(shè)其公差為,則,所以數(shù)列是常數(shù)列.充分性:若數(shù)列是常數(shù)列,則(),即(),所以或.因為數(shù)列的各項互不相等,所以,所以數(shù)列是等差數(shù)列.綜上可知,數(shù)列是等差數(shù)列的充分必要條件是數(shù)列是常數(shù)列.(3)解:當時,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論