貴州省部分重點中學(xué)2024屆高三下學(xué)期開年考試數(shù)學(xué)試題試卷_第1頁
貴州省部分重點中學(xué)2024屆高三下學(xué)期開年考試數(shù)學(xué)試題試卷_第2頁
貴州省部分重點中學(xué)2024屆高三下學(xué)期開年考試數(shù)學(xué)試題試卷_第3頁
貴州省部分重點中學(xué)2024屆高三下學(xué)期開年考試數(shù)學(xué)試題試卷_第4頁
貴州省部分重點中學(xué)2024屆高三下學(xué)期開年考試數(shù)學(xué)試題試卷_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

貴州省部分重點中學(xué)2024屆高三下學(xué)期開年考試數(shù)學(xué)試題試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù),則()A. B. C. D.2.函數(shù)的圖象與函數(shù)的圖象的交點橫坐標的和為()A. B. C. D.3.將函數(shù)的圖象向左平移個單位長度,得到的函數(shù)為偶函數(shù),則的值為()A. B. C. D.4.已知f(x)=ax2+bx是定義在[a–1,2a]上的偶函數(shù),那么a+b的值是A. B.C. D.5.趙爽是我國古代數(shù)學(xué)家、天文學(xué)家,大約在公元222年,趙爽為《周髀算經(jīng)》一書作序時,介紹了“勾股圓方圖”,亦稱“趙爽弦圖”(以弦為邊長得到的正方形是由4個全等的直角三角形再加上中間的一個小正方形組成的).類比“趙爽弦圖”.可類似地構(gòu)造如下圖所示的圖形,它是由3個全等的三角形與中間的一個小等邊三角形拼成一個大等邊三角形.設(shè),若在大等邊三角形中隨機取一點,則此點取自小等邊三角形(陰影部分)的概率是()A. B. C. D.6.的展開式中的一次項系數(shù)為()A. B. C. D.7.拋物線C:y2=2px的焦點F是雙曲線C2:x2m-y21-m=1A.2+1 B.22+3 C.8.設(shè)f(x)是定義在R上的偶函數(shù),且在(0,+∞)單調(diào)遞減,則()A. B.C. D.9.設(shè)復(fù)數(shù),則=()A.1 B. C. D.10.已知復(fù)數(shù)滿足,則()A. B. C. D.11.如圖所示,正方體的棱,的中點分別為,,則直線與平面所成角的正弦值為()A. B. C. D.12.設(shè),為非零向量,則“存在正數(shù),使得”是“”的()A.既不充分也不必要條件 B.必要不充分條件C.充分必要條件 D.充分不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.復(fù)數(shù)(其中i為虛數(shù)單位)的共軛復(fù)數(shù)為________.14.已知數(shù)列的前項和為,且滿足,則______15.已知等邊三角形的邊長為1.,點、分別為線段、上的動點,則取值的集合為__________.16.函數(shù)的最小正周期是_______________,單調(diào)遞增區(qū)間是__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標系中,直線的參數(shù)方程為(為參數(shù)).以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求和的直角坐標方程;(2)已知為曲線上的一個動點,求線段的中點到直線的最大距離.18.(12分)已知數(shù)列中,(實數(shù)為常數(shù)),是其前項和,且數(shù)列是等比數(shù)列,恰為與的等比中項.(1)證明:數(shù)列是等差數(shù)列;(2)求數(shù)列的通項公式;(3)若,當(dāng)時,的前項和為,求證:對任意,都有.19.(12分)設(shè)函數(shù).(1)若恒成立,求整數(shù)的最大值;(2)求證:.20.(12分)設(shè)函數(shù).(1)若,時,在上單調(diào)遞減,求的取值范圍;(2)若,,,求證:當(dāng)時,.21.(12分)2018年反映社會現(xiàn)實的電影《我不是藥神》引起了很大的轟動,治療特種病的創(chuàng)新藥研發(fā)成了當(dāng)務(wù)之急.為此,某藥企加大了研發(fā)投入,市場上治療一類慢性病的特效藥品的研發(fā)費用(百萬元)和銷量(萬盒)的統(tǒng)計數(shù)據(jù)如下:研發(fā)費用(百萬元)2361013151821銷量(萬盒)1122.53.53.54.56(1)求與的相關(guān)系數(shù)精確到0.01,并判斷與的關(guān)系是否可用線性回歸方程模型擬合?(規(guī)定:時,可用線性回歸方程模型擬合);(2)該藥企準備生產(chǎn)藥品的三類不同的劑型,,,并對其進行兩次檢測,當(dāng)?shù)谝淮螜z測合格后,才能進行第二次檢測.第一次檢測時,三類劑型,,合格的概率分別為,,,第二次檢測時,三類劑型,,合格的概率分別為,,.兩次檢測過程相互獨立,設(shè)經(jīng)過兩次檢測后,,三類劑型合格的種類數(shù)為,求的數(shù)學(xué)期望.附:(1)相關(guān)系數(shù)(2),,,.22.(10分)在平面直角坐標系中,曲線:(為參數(shù),),曲線:(為參數(shù)).若曲線和相切.(1)在以為極點,軸非負半軸為極軸的極坐標系中,求曲線的普通方程;(2)若點,為曲線上兩動點,且滿足,求面積的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

根據(jù)分段函數(shù)解析式,先求得的值,再求得的值.【詳解】依題意,.故選:A【點睛】本小題主要考查根據(jù)分段函數(shù)解析式求函數(shù)值,屬于基礎(chǔ)題.2、B【解析】

根據(jù)兩個函數(shù)相等,求出所有交點的橫坐標,然后求和即可.【詳解】令,有,所以或.又,所以或或或,所以函數(shù)的圖象與函數(shù)的圖象交點的橫坐標的和,故選B.【點睛】本題主要考查三角函數(shù)的圖象及給值求角,側(cè)重考查數(shù)學(xué)建模和數(shù)學(xué)運算的核心素養(yǎng).3、D【解析】

利用三角函數(shù)的圖象變換求得函數(shù)的解析式,再根據(jù)三角函數(shù)的性質(zhì),即可求解,得到答案.【詳解】將將函數(shù)的圖象向左平移個單位長度,可得函數(shù)又由函數(shù)為偶函數(shù),所以,解得,因為,當(dāng)時,,故選D.【點睛】本題主要考查了三角函數(shù)的圖象變換,以及三角函數(shù)的性質(zhì)的應(yīng)用,其中解答中熟記三角函數(shù)的圖象變換,合理應(yīng)用三角函數(shù)的圖象與性質(zhì)是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.4、B【解析】

依照偶函數(shù)的定義,對定義域內(nèi)的任意實數(shù),f(﹣x)=f(x),且定義域關(guān)于原點對稱,a﹣1=﹣2a,即可得解.【詳解】根據(jù)偶函數(shù)的定義域關(guān)于原點對稱,且f(x)是定義在[a–1,2a]上的偶函數(shù),得a–1=–2a,解得a=,又f(–x)=f(x),∴b=0,∴a+b=.故選B.【點睛】本題考查偶函數(shù)的定義,對定義域內(nèi)的任意實數(shù),f(﹣x)=f(x);奇函數(shù)和偶函數(shù)的定義域必然關(guān)于原點對稱,定義域區(qū)間兩個端點互為相反數(shù).5、A【解析】

根據(jù)幾何概率計算公式,求出中間小三角形區(qū)域的面積與大三角形面積的比值即可.【詳解】在中,,,,由余弦定理,得,所以.所以所求概率為.故選A.【點睛】本題考查了幾何概型的概率計算問題,是基礎(chǔ)題.6、B【解析】

根據(jù)多項式乘法法則得出的一次項系數(shù),然后由等差數(shù)列的前項和公式和組合數(shù)公式得出結(jié)論.【詳解】由題意展開式中的一次項系數(shù)為.故選:B.【點睛】本題考查二項式定理的應(yīng)用,應(yīng)用多項式乘法法則可得展開式中某項系數(shù).同時本題考查了組合數(shù)公式.7、A【解析】

先由題和拋物線的性質(zhì)求得點P的坐標和雙曲線的半焦距c的值,再利用雙曲線的定義可求得a的值,即可求得離心率.【詳解】由題意知,拋物線焦點F1,0,準線與x軸交點F'(-1,0),雙曲線半焦距c=1,設(shè)點Q(-1,y)ΔFPQ是以點P為直角頂點的等腰直角三角形,即PF所以PQ⊥拋物線的準線,從而PF⊥x軸,所以P1,2∴2a=P即a=故雙曲線的離心率為e=故選A【點睛】本題考查了圓錐曲線綜合,分析題目,畫出圖像,熟悉拋物線性質(zhì)以及雙曲線的定義是解題的關(guān)鍵,屬于中檔題.8、D【解析】

利用是偶函數(shù)化簡,結(jié)合在區(qū)間上的單調(diào)性,比較出三者的大小關(guān)系.【詳解】是偶函數(shù),,而,因為在上遞減,,即.故選:D【點睛】本小題主要考查利用函數(shù)的奇偶性和單調(diào)性比較大小,屬于基礎(chǔ)題.9、A【解析】

根據(jù)復(fù)數(shù)的除法運算,代入化簡即可求解.【詳解】復(fù)數(shù),則故選:A.【點睛】本題考查了復(fù)數(shù)的除法運算與化簡求值,屬于基礎(chǔ)題.10、A【解析】

根據(jù)復(fù)數(shù)的運算法則,可得,然后利用復(fù)數(shù)模的概念,可得結(jié)果.【詳解】由題可知:由,所以所以故選:A【點睛】本題主要考查復(fù)數(shù)的運算,考驗計算,屬基礎(chǔ)題.11、C【解析】

以D為原點,DA,DC,DD1分別為軸,建立空間直角坐標系,由向量法求出直線EF與平面AA1D1D所成角的正弦值.【詳解】以D為原點,DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標系,設(shè)正方體ABCD﹣A1B1C1D1的棱長為2,則,,,取平面的法向量為,設(shè)直線EF與平面AA1D1D所成角為θ,則sinθ=|,直線與平面所成角的正弦值為.故選C.【點睛】本題考查了線面角的正弦值的求法,也考查數(shù)形結(jié)合思想和向量法的應(yīng)用,屬于中檔題.12、D【解析】

充分性中,由向量數(shù)乘的幾何意義得,再由數(shù)量積運算即可說明成立;必要性中,由數(shù)量積運算可得,不一定有正數(shù),使得,所以不成立,即可得答案.【詳解】充分性:若存在正數(shù),使得,則,,得證;必要性:若,則,不一定有正數(shù),使得,故不成立;所以是充分不必要條件故選:D【點睛】本題考查平面向量數(shù)量積的運算,向量數(shù)乘的幾何意義,還考查了充分必要條件的判定,屬于簡單題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

利用復(fù)數(shù)的乘法運算求出,再利用共軛復(fù)數(shù)的概念即可求解.【詳解】由,則.故答案為:【點睛】本題考查了復(fù)數(shù)的四則運算以及共軛復(fù)數(shù)的概念,屬于基礎(chǔ)題.14、【解析】

對題目所給等式進行賦值,由此求得的表達式,判斷出數(shù)列是等比數(shù)列,由此求得的值.【詳解】解:,可得時,,時,,又,兩式相減可得,即,上式對也成立,可得數(shù)列是首項為1,公比為的等比數(shù)列,可得.【點睛】本小題主要考查已知求,考查等比數(shù)列前項和公式,屬于中檔題.15、【解析】

根據(jù)題意建立平面直角坐標系,設(shè)三角形各點的坐標,依題意求出,,,的表達式,再進行數(shù)量積的運算,最后求和即可得出結(jié)果.【詳解】解:以的中點為坐標原點,所在直線為軸,線段的垂直平分線為軸建立平面直角坐標系,如圖所示,則,,,,則,,,設(shè),,,即點的坐標為,則,,,所以故答案為:【點睛】本題考查平面向量的坐標表示和線性運算,以及平面向量基本定理和數(shù)量積的運算,是中檔題.16、,,【解析】

化簡函數(shù)的解析式,利用余弦函數(shù)的圖象和性質(zhì)求解即可.【詳解】函數(shù),最小正周期,令,,可得,,所以單調(diào)遞增區(qū)間是,,.故答案為:,,,.【點睛】本題主要考查了二倍角的公式的應(yīng)用,余弦函數(shù)的圖象與性質(zhì),屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)..(2)最大距離為.【解析】

(1)直接利用極坐標方程和參數(shù)方程的公式計算得到答案.(2)曲線的參數(shù)方程為,設(shè),計算點到直線的距離公式得到答案.【詳解】(1)由,得,則曲線的直角坐標方程為,即.直線的直角坐標方程為.(2)可知曲線的參數(shù)方程為(為參數(shù)),設(shè),,則到直線的距離為,所以線段的中點到直線的最大距離為.【點睛】本題考查了極坐標方程,參數(shù)方程,距離的最值問題,意在考查學(xué)生的計算能力.18、(1)見解析(2)(3)見解析【解析】

(1)令可得,即.得到,再利用通項公式和前n項和的關(guān)系求解,(2)由(1)知,.設(shè)等比數(shù)列的公比為,所以,再根據(jù)恰為與的等比中項求解,(3)由(2)得到時,,,求得,再代入證明?!驹斀狻浚?)解:令可得,即.所以.時,可得,當(dāng)時,所以.顯然當(dāng)時,滿足上式.所以.,所以數(shù)列是等差數(shù)列,(2)由(1)知,.設(shè)等比數(shù)列的公比為,所以,恰為與的等比中項,所以,解得,所以(3)時,,,而時,,,所以當(dāng)時,.當(dāng)時,,∴對任意,都有,【點睛】本題主要考查數(shù)列的通項公式和前n項和的關(guān)系,等差數(shù)列,等比數(shù)列的定義和性質(zhì)以及數(shù)列放縮的方法,還考查了轉(zhuǎn)化化歸的思想和運算求解的能力,屬于難題,19、(1)整數(shù)的最大值為;(2)見解析.【解析】

(1)將不等式變形為,構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性并確定其最值,從而得到正整數(shù)的最大值;(2)根據(jù)(1)的結(jié)論得到,利用不等式的基本性質(zhì)可證得結(jié)論.【詳解】(1)由得,令,,令,對恒成立,所以,函數(shù)在上單調(diào)遞增,,,,,故存在使得,即,從而當(dāng)時,有,,所以,函數(shù)在上單調(diào)遞增;當(dāng)時,有,,所以,函數(shù)在上單調(diào)遞減.所以,,,因此,整數(shù)的最大值為;(2)由(1)知恒成立,,令則,,,,,上述等式全部相加得,所以,,因此,【點睛】本題考查導(dǎo)數(shù)在函數(shù)單調(diào)性、最值中的應(yīng)用,以及放縮法證明不等式的技巧,屬于難題.20、(1)(2)見解析【解析】

(1)在上單調(diào)遞減等價于在恒成立,分離參數(shù)即可解決.(2)先對求導(dǎo),化簡后根據(jù)零點存在性定理判斷唯一零點所在區(qū)間,構(gòu)造函數(shù)利用基本不等式求解即可.【詳解】(1),時,,,∵在上單調(diào)遞減.∴,.令,,時,;時,,∴在上為減函數(shù),在上為增函數(shù).∴,∴.∴的取值范圍為.(2)若,,時,,,令,顯然在上為增函數(shù).又,,∴有唯一零點.且,時,,;時,,,∴在上為增函數(shù),在上為減函數(shù).∴.又,∴,,.∴.,.∴當(dāng)時,.【點睛】此題考查函數(shù)定區(qū)間上單調(diào),和零點存在性定理等知識點,難點為找到最值后的構(gòu)造函數(shù)求值域,屬于較難題目.21、(1)0.98;可用線性回歸模型擬合.(2)【解析】

(1)根據(jù)題目提供的數(shù)據(jù)求出,代入相關(guān)系數(shù)公式求出,根據(jù)的大小來確定結(jié)果;(2)求出藥品的每類劑型經(jīng)過兩次檢測后合格的概率,發(fā)現(xiàn)它們相同,那么經(jīng)過兩次檢測后,,三類劑型合格的種類數(shù)為,服從二項分布,利用二項分布的期望公式求解即可.【詳解】解:(1)由題意可知,,由公式,,∴與的關(guān)系可用線性回歸模型擬合;(2)藥品的每類劑型經(jīng)過兩次檢測后

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論