




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
函數(shù)與導(dǎo)數(shù)專項(xiàng)測試卷考試時(shí)間:120分鐘滿分:150分一、單選題:本大題共8小題,每個(gè)小題5分,共40分.在每小題給出的選項(xiàng)中,只有一項(xiàng)是符合題目要求的.1.(2023·遼寧·遼寧實(shí)驗(yàn)中學(xué)校考模擬預(yù)測)下列函數(shù)不是偶函數(shù)的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】根據(jù)函數(shù)的奇偶性的定義求解.【詳解】對(duì)于A項(xiàng),SKIPIF1<0,定義域?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0為偶函數(shù);對(duì)于B項(xiàng),定義域?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0為偶函數(shù);對(duì)于C項(xiàng),SKIPIF1<0的定義域?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0不是偶函數(shù);對(duì)于D項(xiàng),SKIPIF1<0的定義域?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0是偶函數(shù).故選:C.2.(2022·吉林·東北師大附中??寄M預(yù)測)一種藥在病人血液中的量不低于1800mg時(shí)才有療效,如果用藥前,病人血液中該藥的量為0mg,用藥后,藥在血液中以每小時(shí)20%的比例衰減.現(xiàn)給某病人靜脈注射了3600mg的此藥,為了持續(xù)保持療效,則最長需要在多少小時(shí)后再次注射此藥(SKIPIF1<0,結(jié)果精確到0.1)(
)A.2.7 B.2.9 C.3.1 D.3.3【答案】C【分析】根據(jù)指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的運(yùn)算法則即可求解.【詳解】設(shè)注射后經(jīng)過的時(shí)間為SKIPIF1<0,血液中藥物的含量為SKIPIF1<0,則有SKIPIF1<0,因?yàn)樗幵诓∪搜褐械牧坎坏陀?800mg時(shí)才有療效,所以令SKIPIF1<0,解得SKIPIF1<0.故選:C.3.(2023·全國·模擬預(yù)測)高斯是德國著名的數(shù)學(xué)家,近代數(shù)學(xué)奠基者之一,享有“數(shù)學(xué)王子”的稱號(hào),設(shè)SKIPIF1<0,用SKIPIF1<0表示不超過SKIPIF1<0的最大整數(shù),SKIPIF1<0也被稱為“高斯函數(shù)”,例如SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0為函數(shù)SKIPIF1<0的零點(diǎn),則SKIPIF1<0(
)A.2 B.3 C.4 D.5【答案】A【分析】首先判斷函數(shù)的單調(diào)性,再根據(jù)零點(diǎn)存在性定理判斷SKIPIF1<0所在區(qū)間,最后根據(jù)高斯函數(shù)的定義計(jì)算可得.【詳解】解:因?yàn)镾KIPIF1<0與SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,又SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上存在唯一零點(diǎn)SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0.故選:A4.(2021·天津薊州·天津市薊州區(qū)第一中學(xué)??寄M預(yù)測)已知函數(shù)SKIPIF1<0是SKIPIF1<0上的單調(diào)函數(shù),則實(shí)數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】由函數(shù)可得SKIPIF1<0且SKIPIF1<0,故可得函數(shù)只能是SKIPIF1<0上的單調(diào)遞減函數(shù),然后列不等式即可【詳解】由SKIPIF1<0可得SKIPIF1<0且SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0不可能是增函數(shù),所以函數(shù)SKIPIF1<0在SKIPIF1<0上不可能是增函數(shù),則函數(shù)SKIPIF1<0是SKIPIF1<0上的單調(diào)遞減函數(shù),所以SKIPIF1<0,解得SKIPIF1<0,綜上:實(shí)數(shù)a的取值范圍為SKIPIF1<0,故選:B5.(2023·河南信陽·河南省信陽市第二高級(jí)中學(xué)校聯(lián)考一模)已知函數(shù)SKIPIF1<0對(duì)SKIPIF1<0均滿足SKIPIF1<0,其中SKIPIF1<0是SKIPIF1<0的導(dǎo)數(shù),則下列不等式恒成立的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】根據(jù)給定的等式,構(gòu)造函數(shù)并探討其單調(diào)性,再逐項(xiàng)計(jì)算判斷作答.【詳解】SKIPIF1<0,令SKIPIF1<0,求導(dǎo)得:SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,因此函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,對(duì)于A,SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,A正確;對(duì)于B,SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,B錯(cuò)誤;對(duì)于C,SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,C錯(cuò)誤;對(duì)于D,SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,D錯(cuò)誤.故選:A6.(2023·青海海東·統(tǒng)考一模)已知定義在SKIPIF1<0上的函數(shù)SKIPIF1<0的導(dǎo)函數(shù)為SKIPIF1<0,若SKIPIF1<0,且SKIPIF1<0,則不等式SKIPIF1<0的解集是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】設(shè)SKIPIF1<0,求導(dǎo)可得SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,再根據(jù)SKIPIF1<0轉(zhuǎn)化為SKIPIF1<0,再結(jié)合SKIPIF1<0的單調(diào)性求解即可.【詳解】設(shè)SKIPIF1<0,則SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減.不等式SKIPIF1<0等價(jià)于不等式SKIPIF1<0,即SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.因?yàn)镾KIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0,解得SKIPIF1<0故選:A7.(2021·陜西漢中·統(tǒng)考模擬預(yù)測)已知定義在SKIPIF1<0上的函數(shù)SKIPIF1<0,其導(dǎo)函數(shù)為SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0的大小關(guān)系是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根據(jù)題意當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,結(jié)合導(dǎo)數(shù)的運(yùn)算法則可構(gòu)造函數(shù)SKIPIF1<0,由此判斷其單調(diào)性,利用函數(shù)的單調(diào)性,即可判斷SKIPIF1<0的大小.【詳解】設(shè)SKIPIF1<0,則SKIPIF1<0,由題意知當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0時(shí)單調(diào)遞增,故SKIPIF1<0,即SKIPIF1<0,故選:D.8.(2022·江蘇南京·模擬預(yù)測)已知函數(shù)SKIPIF1<0(SKIPIF1<0),且SKIPIF1<0在SKIPIF1<0有兩個(gè)零點(diǎn),則SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】根據(jù)給定條件,利用零點(diǎn)的意義等價(jià)轉(zhuǎn)化,構(gòu)造函數(shù)SKIPIF1<0,再借助導(dǎo)數(shù)探討函數(shù)SKIPIF1<0在SKIPIF1<0有兩個(gè)零點(diǎn)作答.【詳解】SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0得,SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,依題意,函數(shù)SKIPIF1<0在SKIPIF1<0有兩個(gè)零點(diǎn),顯然SKIPIF1<0,而SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,則有SKIPIF1<0,當(dāng)SKIPIF1<0或SKIPIF1<0,即SKIPIF1<0或SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞增或單調(diào)遞減,即有函數(shù)SKIPIF1<0在SKIPIF1<0只有一個(gè)零點(diǎn)1,因此SKIPIF1<0,此時(shí)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0單調(diào)遞增,則SKIPIF1<0,要函數(shù)SKIPIF1<0在SKIPIF1<0有兩個(gè)零點(diǎn),當(dāng)且僅當(dāng)SKIPIF1<0在SKIPIF1<0上有一個(gè)零點(diǎn),即有SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0的取值范圍SKIPIF1<0.故選:C二、多選題:本大題共4小題,每個(gè)小題5分,共20分.在每小題給出的選項(xiàng)中,只有一項(xiàng)或者多項(xiàng)是符合題目要求的.9.(2023·安徽淮南·統(tǒng)考一模)已知函數(shù)SKIPIF1<0,則(
)A.SKIPIF1<0的值域?yàn)镾KIPIF1<0B.直線SKIPIF1<0是曲線SKIPIF1<0的一條切線C.SKIPIF1<0圖象的對(duì)稱中心為SKIPIF1<0D.方程SKIPIF1<0有三個(gè)實(shí)數(shù)根【答案】BD【分析】A.分SKIPIF1<0兩種情況求函數(shù)的值域;B.利用導(dǎo)數(shù)求函數(shù)的切線,判斷選項(xiàng);C.利用平移判斷函數(shù)的對(duì)稱中心;D.首先求SKIPIF1<0的值,再求解方程的實(shí)數(shù)根.【詳解】A.SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)等號(hào)成立,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)等號(hào)成立,故A錯(cuò)誤;B.令SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,所以圖象在點(diǎn)SKIPIF1<0處的切線方程是SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,所以圖象在點(diǎn)SKIPIF1<0處的切線方程是SKIPIF1<0,得SKIPIF1<0,故B正確;C.SKIPIF1<0的對(duì)稱中心是SKIPIF1<0,所以SKIPIF1<0的對(duì)稱中心是SKIPIF1<0,向右平移1個(gè)單位得SKIPIF1<0,對(duì)稱中心是SKIPIF1<0,故C錯(cuò)誤;D.SKIPIF1<0,解得:SKIPIF1<0或SKIPIF1<0,當(dāng)SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,1個(gè)實(shí)根,當(dāng)SKIPIF1<0時(shí),得SKIPIF1<0或SKIPIF1<0,2個(gè)實(shí)根,所以共3個(gè)實(shí)根,故D正確.故選:BD10.(2023·安徽馬鞍山·統(tǒng)考一模)已知函數(shù)SKIPIF1<0,若SKIPIF1<0恒成立,則實(shí)數(shù)SKIPIF1<0的可能的值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】AD【分析】根據(jù)SKIPIF1<0轉(zhuǎn)化成SKIPIF1<0恒成立,構(gòu)造函數(shù)SKIPIF1<0利用導(dǎo)數(shù)求解SKIPIF1<0的單調(diào)性,問題進(jìn)一步轉(zhuǎn)化成SKIPIF1<0恒成立,構(gòu)造SKIPIF1<0,求解最值即可.【詳解】SKIPIF1<0,故SKIPIF1<0恒成立,轉(zhuǎn)化成SKIPIF1<0恒成立,記SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0單調(diào)遞增,故由SKIPIF1<0得SKIPIF1<0,故SKIPIF1<0恒成立,記SKIPIF1<0,故當(dāng)SKIPIF1<0時(shí),SKIPIF1<0單調(diào)遞減,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0單調(diào)遞增,故當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取最大值SKIPIF1<0,故由SKIPIF1<0恒成立,即SKIPIF1<0,故SKIPIF1<0,故選:AD【點(diǎn)睛】本題主要考查導(dǎo)數(shù)在函數(shù)中的應(yīng)用,著重考查了轉(zhuǎn)化與化歸思想、邏輯推理能力與計(jì)算能力,對(duì)導(dǎo)數(shù)的應(yīng)用的考查主要從以下幾個(gè)角度進(jìn)行:(1)考查導(dǎo)數(shù)的幾何意義,求解曲線在某點(diǎn)處的切線方程;(2)利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,判斷單調(diào)性;已知單調(diào)性,求參數(shù);(3)利用導(dǎo)數(shù)求函數(shù)的最值(極值),解決函數(shù)的恒成立與有解問題,同時(shí)注意數(shù)形結(jié)合思想的應(yīng)用.11.(2023·廣東肇慶·統(tǒng)考二模)函數(shù)SKIPIF1<0的部分圖像如圖所示,SKIPIF1<0,則下列選項(xiàng)中正確的有(
)A.SKIPIF1<0的最小正周期為SKIPIF1<0B.SKIPIF1<0是奇函數(shù)C.SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0D.SKIPIF1<0,其中SKIPIF1<0為SKIPIF1<0的導(dǎo)函數(shù)【答案】AD【分析】根據(jù)題意可求得函數(shù)的周期,即可判斷A,進(jìn)而可求得SKIPIF1<0,再根據(jù)待定系數(shù)法可求得SKIPIF1<0,再根據(jù)三角函數(shù)的奇偶性可判斷B,根據(jù)余弦函數(shù)的單調(diào)性即可判斷C,求導(dǎo)計(jì)算即可判斷D.【詳解】解:由題意可得SKIPIF1<0,所以SKIPIF1<0,故A正確;則SKIPIF1<0,所以SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0為偶函數(shù),故B錯(cuò)誤;令SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0,故C錯(cuò)誤;SKIPIF1<0,則SKIPIF1<0,故D正確.故選:AD.12.(2023·湖南岳陽·統(tǒng)考一模)已知函數(shù)SKIPIF1<0,則(
)A.SKIPIF1<0是周期函數(shù) B.函數(shù)SKIPIF1<0在定義域上是單調(diào)遞增函數(shù)C.函數(shù)SKIPIF1<0是偶函數(shù) D.函數(shù)SKIPIF1<0的圖象關(guān)于點(diǎn)SKIPIF1<0對(duì)稱【答案】ABD【分析】根據(jù)正弦函數(shù)周期判斷A,由指數(shù)函數(shù)、反比例函數(shù)的單調(diào)性判斷B,根據(jù)奇偶性定義判斷C,由函數(shù)中心對(duì)稱充要條件判斷D.【詳解】令SKIPIF1<0,則SKIPIF1<0,所以函數(shù)為周期函數(shù),故A正確;因?yàn)镾KIPIF1<0,因?yàn)镾KIPIF1<0在定義域上單調(diào)遞減,且SKIPIF1<0,所以由復(fù)合函數(shù)的單調(diào)性質(zhì)可得SKIPIF1<0在定義域上是單調(diào)遞增函數(shù),故B正確;令SKIPIF1<0,則SKIPIF1<0,所以函數(shù)SKIPIF1<0是奇函數(shù),故C錯(cuò)誤;因?yàn)镾KIPIF1<0,所以函數(shù)SKIPIF1<0的圖象關(guān)于點(diǎn)SKIPIF1<0對(duì)稱,故D正確.故選:ABD
三、填空題:本大題共4小題,每小題5分,共20分.把答案填在答題卡中的橫線上.13.(2022·四川樂山·統(tǒng)考一模)函數(shù)SKIPIF1<0在SKIPIF1<0上所有零點(diǎn)之和為__________________.【答案】4【分析】利用數(shù)形結(jié)合,將函數(shù)零點(diǎn)問題轉(zhuǎn)化為函數(shù)SKIPIF1<0和SKIPIF1<0的交點(diǎn)問題,利用函數(shù)的對(duì)稱性,可求零點(diǎn)的和.【詳解】函數(shù)SKIPIF1<0,即SKIPIF1<0,函數(shù)SKIPIF1<0和SKIPIF1<0關(guān)于點(diǎn)SKIPIF1<0對(duì)稱,如圖畫出兩個(gè)函數(shù)在區(qū)間SKIPIF1<0的函數(shù)圖象,兩個(gè)函數(shù)圖象有4個(gè)交點(diǎn),利用對(duì)稱性可知,交點(diǎn)橫坐標(biāo)的和SKIPIF1<0.故答案為:414.(2023·江西景德鎮(zhèn)·統(tǒng)考模擬預(yù)測)已知SKIPIF1<0是定義在SKIPIF1<0上的偶函數(shù),且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則滿足SKIPIF1<0的SKIPIF1<0的取值范圍是_________.【答案】SKIPIF1<0【分析】首先判斷函數(shù)的單調(diào)性,根據(jù)偶函數(shù)的性質(zhì)及單調(diào)性原不等式等價(jià)于SKIPIF1<0,解得即可.【詳解】解:因?yàn)镾KIPIF1<0是定義在SKIPIF1<0上的偶函數(shù),且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,則不等式SKIPIF1<0等價(jià)于SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0.故答案為:SKIPIF1<015.(2021·陜西榆林·??寄M預(yù)測)函數(shù)SKIPIF1<0的定義域?yàn)開_____.【答案】SKIPIF1<0【分析】根據(jù)函數(shù)的解析式,列出函數(shù)有意義時(shí)滿足的不等式,求得答案.【詳解】函數(shù)SKIPIF1<0需滿足SKIPIF1<0,解得SKIPIF1<0且SKIPIF1<0,故函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,故答案為:SKIPIF1<016.(2022·上海徐匯·統(tǒng)考一模)設(shè)SKIPIF1<0,函數(shù)SKIPIF1<0的圖像與直線SKIPIF1<0有四個(gè)交點(diǎn),且這些交點(diǎn)的橫坐標(biāo)分別為SKIPIF1<0,則SKIPIF1<0的取值范圍為___________.【答案】SKIPIF1<0【分析】根據(jù)題意,利用韋達(dá)定理,求得SKIPIF1<0,SKIPIF1<0和SKIPIF1<0的關(guān)系,以及SKIPIF1<0的范圍,將目標(biāo)式轉(zhuǎn)化為關(guān)于SKIPIF1<0的函數(shù),借助對(duì)勾函數(shù)的單調(diào)性,即可求得結(jié)果.【詳解】根據(jù)題意,令SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,不妨設(shè)SKIPIF1<0作圖如下:又直線SKIPIF1<0的斜率為SKIPIF1<0,數(shù)形結(jié)合可知,要滿足題意,SKIPIF1<0;且SKIPIF1<0為方程SKIPIF1<0,即SKIPIF1<0的兩根,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0;SKIPIF1<0為方程SKIPIF1<0,即SKIPIF1<0的兩根,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0;則SKIPIF1<0SKIPIF1<0,令SKIPIF1<0,由對(duì)勾函數(shù)單調(diào)性可知SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,又SKIPIF1<0,故SKIPIF1<0SKIPIF1<0,即SKIPIF1<0的取值范圍為SKIPIF1<0.故答案為:SKIPIF1<0.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題考查函數(shù)與方程;處理問題的關(guān)鍵是能夠數(shù)形結(jié)合求得SKIPIF1<0,SKIPIF1<0和SKIPIF1<0的關(guān)系,從而借助函數(shù)單調(diào)性求值域,屬綜合中檔題.
四、解答題:本大題共6小題,共70分.解答應(yīng)寫出必要的文字說明、證明過程或演算步驟.17.(2023·全國·模擬預(yù)測)已知函數(shù)SKIPIF1<0.(1)求函數(shù)SKIPIF1<0的圖象在SKIPIF1<0處的切線方程;(2)判斷函數(shù)SKIPIF1<0的零點(diǎn)個(gè)數(shù),并說明理由.【答案】(1)SKIPIF1<0(2)有兩個(gè)零點(diǎn),理由見解析【分析】(1)根據(jù)導(dǎo)數(shù)的幾何意義,結(jié)合導(dǎo)數(shù)的運(yùn)算進(jìn)行求解即可;(2)令SKIPIF1<0轉(zhuǎn)化為SKIPIF1<0與SKIPIF1<0圖象交點(diǎn)的個(gè)數(shù),利用導(dǎo)數(shù)得到SKIPIF1<0單調(diào)性,結(jié)合兩個(gè)函數(shù)的圖象判斷可得答案.【詳解】(1)SKIPIF1<0,所以切線斜率為SKIPIF1<0,SKIPIF1<0,所以切點(diǎn)坐標(biāo)為SKIPIF1<0,函數(shù)SKIPIF1<0的圖象在SKIPIF1<0處的切線方程為SKIPIF1<0;(2)有兩個(gè)零點(diǎn),理由如下,令SKIPIF1<0,可得SKIPIF1<0,判斷函數(shù)SKIPIF1<0的零點(diǎn)個(gè)數(shù)即判斷SKIPIF1<0與SKIPIF1<0圖象交點(diǎn)的個(gè)數(shù),因?yàn)镾KIPIF1<0為單調(diào)遞增函數(shù),SKIPIF1<0,當(dāng)SKIPIF1<0無限接近于SKIPIF1<0時(shí)SKIPIF1<0無限接近于SKIPIF1<0,且SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞增,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞減,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,且當(dāng)SKIPIF1<0無限接近于2時(shí)SKIPIF1<0無限接近于SKIPIF1<0,所以SKIPIF1<0與SKIPIF1<0的圖象在SKIPIF1<0時(shí)有一個(gè)交點(diǎn),在SKIPIF1<0時(shí)有一個(gè)交點(diǎn),綜上函數(shù)SKIPIF1<0有2個(gè)零點(diǎn).【點(diǎn)睛】方法點(diǎn)睛:已知函數(shù)有零點(diǎn)(方程有根)求參數(shù)值(取值范圍)常用的方法:(1)直接法:直接求解方程得到方程的根,再通過解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)的值域問題加以解決;(3)數(shù)形結(jié)合法:先對(duì)解析式變形,進(jìn)而構(gòu)造兩個(gè)函數(shù),然后在同一平面直角坐標(biāo)系中畫出函數(shù)的圖象,利用數(shù)形結(jié)合的方法求解18.(2023·全國·模擬預(yù)測)已知函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),求函數(shù)SKIPIF1<0的單調(diào)區(qū)間;(2)是否存在正整數(shù)m,使得SKIPIF1<0恒成立,若存在求出m的最小值,若不存在說明理由.【答案】(1)函數(shù)SKIPIF1<0的單調(diào)減區(qū)間為SKIPIF1<0,單調(diào)增區(qū)間為SKIPIF1<0.(2)存在正整數(shù)SKIPIF1<0【分析】(1)當(dāng)SKIPIF1<0時(shí),對(duì)函數(shù)SKIPIF1<0求導(dǎo),令SKIPIF1<0和SKIPIF1<0,即可求出函數(shù)SKIPIF1<0的單調(diào)區(qū)間;(2)要使SKIPIF1<0恒成立,即SKIPIF1<0恒成立,討論SKIPIF1<0和SKIPIF1<0,求出SKIPIF1<0的單調(diào)性,即可知要使SKIPIF1<0,令SKIPIF1<0,對(duì)SKIPIF1<0求導(dǎo),得出SKIPIF1<0的單調(diào)性,即可得解.【詳解】(1)當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,SKIPIF1<0,令SKIPIF1<0,解得:SKIPIF1<0;令SKIPIF1<0,解得:SKIPIF1<0,所以函數(shù)SKIPIF1<0的單調(diào)減區(qū)間為SKIPIF1<0,單調(diào)增區(qū)間為SKIPIF1<0.(2)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,SKIPIF1<0,若SKIPIF1<0,即SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,無最大值;若SKIPIF1<0,即SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減.當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0取得最大值,且SKIPIF1<0,要使SKIPIF1<0恒成立,即SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,當(dāng)SKIPIF1<0趨近于2時(shí),SKIPIF1<0,SKIPIF1<0,所以存在最小正整數(shù)SKIPIF1<0,使得SKIPIF1<0,即是使得SKIPIF1<0恒成立.19.(2023·四川綿陽·統(tǒng)考模擬預(yù)測)已知函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),求SKIPIF1<0的極值;(2)設(shè)SKIPIF1<0在區(qū)間SKIPIF1<0上的最小值為SKIPIF1<0,求SKIPIF1<0及SKIPIF1<0的最大值.【答案】(1)極大值SKIPIF1<0,極小值0(2)SKIPIF1<0,SKIPIF1<0的最大值為0,【分析】(1)由極值的概念求解,(2)根據(jù)SKIPIF1<0的取值分類討論求解SKIPIF1<0的單調(diào)區(qū)間后得SKIPIF1<0,再由導(dǎo)數(shù)判斷單調(diào)性后求解最大值,【詳解】(1)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0或SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0和SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0的極大值為SKIPIF1<0,極小值為SKIPIF1<0,(2)SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0在區(qū)間SKIPIF1<0上的最小值為SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),當(dāng)SKIPIF1<0或SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0和SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0在區(qū)間SKIPIF1<0上的最小值為SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),同理得SKIPIF1<0在SKIPIF1<0和SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,若SKIPIF1<0,SKIPIF1<0在區(qū)間SKIPIF1<0上的最小值為SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0在區(qū)間SKIPIF1<0上的最小值為SKIPIF1<0綜上,SKIPIF1<0令SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,可知SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,故SKIPIF1<0的最大值為0,20.(2023·湖南湘潭·統(tǒng)考二模)已知SKIPIF1<0,曲線SKIPIF1<0在SKIPIF1<0處的切線方程為SKIPIF1<0.(1)求a,b的值;(2)證明:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.【答案】(1)SKIPIF1<0(2)證明見解析【分析】(1)根據(jù)切點(diǎn)和斜率求得SKIPIF1<0.(2)化簡SKIPIF1<0,利用構(gòu)造函數(shù)法,結(jié)合導(dǎo)數(shù)證得不等式成立.【詳解】(1)由題可知SKIPIF1<0,即SKIPIF1<0.又SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0.(2)SKIPIF1<0,SKIPIF1<0,要證SKIPIF1<0,SKIPIF1<0,只需證SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0,即當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.21.(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0.(1)討論SKIPIF1<0在區(qū)間SKIPIF1<0上的單調(diào)性;(2)當(dāng)SKIPIF1<0時(shí),證明:SKIPIF1<0.【答案】(1)答案見解析;(2)證明見解析.【分析】(1)利用函數(shù)的導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,按照SKIPIF1<0和SKIPIF1<0的大小關(guān)系分類討論;(2)先轉(zhuǎn)化需證明的結(jié)論,構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)的符號(hào),推得SKIPIF1<0,進(jìn)而證明結(jié)論.【詳解】(1)因?yàn)楹瘮?shù)SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減;當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),由SKIPIF1<0,得SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0,SKIPIF1<0上單調(diào)遞減;綜上可得,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0,SKIPIF1<0上單調(diào)遞減;(2)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,要證SKIPIF1<0,即證SKIPIF1<0,即證SKIPIF1<0,令SKIPIF1<0,SKIPIF
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 別墅花園裝修合同范本
- 《錦瑟》教學(xué)設(shè)計(jì) 2024-2025學(xué)年統(tǒng)編版高中語文選擇性必修中冊(cè)
- 借貸合同范本u
- 勞動(dòng)合同范本陜西
- 傳銷性質(zhì)合同范本
- 產(chǎn)品銷售協(xié)議合同范本
- 企業(yè)授權(quán)合同范本
- 2024年重慶大學(xué)機(jī)器人研究所招聘筆試真題
- 上海貨物短途運(yùn)輸合同范本
- 2024年溫州蒼南農(nóng)商銀行招聘筆試真題
- ??低曤娏π袠I(yè)系統(tǒng)解決方案
- 2024-2030年中國街舞培訓(xùn)行業(yè)發(fā)展趨勢及競爭格局分析報(bào)告
- 期末練習(xí)卷(模擬試題)-2024-2025學(xué)年 一年級(jí)上冊(cè)數(shù)學(xué)人教版
- 白血病合并感染
- GB/T 18601-2024天然花崗石建筑板材
- 致病菌引起的食品安全事件
- 有機(jī)肥配施氮肥對(duì)玉米根系生長、氮素利用及產(chǎn)量和品質(zhì)的影響
- 2024年山西省中考語文試卷
- 《大學(xué)美育教程》第二單元-心靈的熏陶:審美活動(dòng)
- 浙江省溫州市(2024年-2025年小學(xué)五年級(jí)語文)人教版期中考試(下學(xué)期)試卷及答案
- 數(shù)據(jù)要素白皮書(2024年)-中國通信標(biāo)準(zhǔn)化協(xié)會(huì)
評(píng)論
0/150
提交評(píng)論