版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
信陽市重點中學2025屆高考考前模擬數(shù)學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知直線:過雙曲線的一個焦點且與其中一條漸近線平行,則雙曲線的方程為()A. B. C. D.2.若雙曲線的離心率,則該雙曲線的焦點到其漸近線的距離為()A. B.2 C. D.13.設(shè)函數(shù)在上可導,其導函數(shù)為,若函數(shù)在處取得極大值,則函數(shù)的圖象可能是()A. B.C. D.4.已知實數(shù)、滿足約束條件,則的最大值為()A. B. C. D.5.若為虛數(shù)單位,則復數(shù),則在復平面內(nèi)對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.設(shè)函數(shù)恰有兩個極值點,則實數(shù)的取值范圍是()A. B.C. D.7.新聞出版業(yè)不斷推進供給側(cè)結(jié)構(gòu)性改革,深入推動優(yōu)化升級和融合發(fā)展,持續(xù)提高優(yōu)質(zhì)出口產(chǎn)品供給,實現(xiàn)了行業(yè)的良性發(fā)展.下面是2012年至2016年我國新聞出版業(yè)和數(shù)字出版業(yè)營收增長情況,則下列說法錯誤的是()A.2012年至2016年我國新聞出版業(yè)和數(shù)字出版業(yè)營收均逐年增加B.2016年我國數(shù)字出版業(yè)營收超過2012年我國數(shù)字出版業(yè)營收的2倍C.2016年我國新聞出版業(yè)營收超過2012年我國新聞出版業(yè)營收的1.5倍D.2016年我國數(shù)字出版營收占新聞出版營收的比例未超過三分之一8.五名志愿者到三個不同的單位去進行幫扶,每個單位至少一人,則甲、乙兩人不在同一個單位的概率為()A. B. C. D.9.已知等差數(shù)列中,,,則數(shù)列的前10項和()A.100 B.210 C.380 D.40010.若直線與曲線相切,則()A.3 B. C.2 D.11.某空間幾何體的三視圖如圖所示(圖中小正方形的邊長為1),則這個幾何體的體積是()A. B. C.16 D.3212.已知拋物線,過拋物線上兩點分別作拋物線的兩條切線為兩切線的交點為坐標原點若,則直線與的斜率之積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知全集為R,集合,則___________.14.已知、為正實數(shù),直線截圓所得的弦長為,則的最小值為__________.15.設(shè)為定義在上的偶函數(shù),當時,(為常數(shù)),若,則實數(shù)的值為______.16.已知數(shù)列是各項均為正數(shù)的等比數(shù)列,若,則的最小值為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓與x軸負半軸交于,離心率.(1)求橢圓C的方程;(2)設(shè)直線與橢圓C交于兩點,連接AM,AN并延長交直線x=4于兩點,若,直線MN是否恒過定點,如果是,請求出定點坐標,如果不是,請說明理由.18.(12分)已知關(guān)于的不等式解集為().(1)求正數(shù)的值;(2)設(shè),且,求證:.19.(12分)在直角坐標系中,曲線的參數(shù)方程為(為參數(shù),為實數(shù)).以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為,曲線與曲線交于,兩點,線段的中點為.(1)求線段長的最小值;(2)求點的軌跡方程.20.(12分)在平面直角坐標系中,點是直線上的動點,為定點,點為的中點,動點滿足,且,設(shè)點的軌跡為曲線.(1)求曲線的方程;(2)過點的直線交曲線于,兩點,為曲線上異于,的任意一點,直線,分別交直線于,兩點.問是否為定值?若是,求的值;若不是,請說明理由.21.(12分)設(shè)等比數(shù)列的前項和為,若(Ⅰ)求數(shù)列的通項公式;(Ⅱ)在和之間插入個實數(shù),使得這個數(shù)依次組成公差為的等差數(shù)列,設(shè)數(shù)列的前項和為,求證:.22.(10分)為了加強環(huán)保知識的宣傳,某學校組織了垃圾分類知識竟賽活動.活動設(shè)置了四個箱子,分別寫有“廚余垃圾”、“有害垃圾”、“可回收物”、“其它垃圾”;另有卡片若干張,每張卡片上寫有一種垃圾的名稱.每位參賽選手從所有卡片中隨機抽取張,按照自己的判斷將每張卡片放入對應的箱子中.按規(guī)則,每正確投放一張卡片得分,投放錯誤得分.比如將寫有“廢電池”的卡片放入寫有“有害垃圾”的箱子,得分,放入其它箱子,得分.從所有參賽選手中隨機抽取人,將他們的得分按照、、、、分組,繪成頻率分布直方圖如圖:(1)分別求出所抽取的人中得分落在組和內(nèi)的人數(shù);(2)從所抽取的人中得分落在組的選手中隨機選取名選手,以表示這名選手中得分不超過分的人數(shù),求的分布列和數(shù)學期望.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
根據(jù)直線:過雙曲線的一個焦點,得,又和其中一條漸近線平行,得到,再求雙曲線方程.【詳解】因為直線:過雙曲線的一個焦點,所以,所以,又和其中一條漸近線平行,所以,所以,,所以雙曲線方程為.故選:A.【點睛】本題主要考查雙曲線的幾何性質(zhì),還考查了運算求解的能力,屬于基礎(chǔ)題.2、C【解析】
根據(jù)雙曲線的解析式及離心率,可求得的值;得漸近線方程后,由點到直線距離公式即可求解.【詳解】雙曲線的離心率,則,,解得,所以焦點坐標為,所以,則雙曲線漸近線方程為,即,不妨取右焦點,則由點到直線距離公式可得,故選:C.【點睛】本題考查了雙曲線的幾何性質(zhì)及簡單應用,漸近線方程的求法,點到直線距離公式的簡單應用,屬于基礎(chǔ)題.3、B【解析】
由題意首先確定導函數(shù)的符號,然后結(jié)合題意確定函數(shù)在區(qū)間和處函數(shù)的特征即可確定函數(shù)圖像.【詳解】函數(shù)在上可導,其導函數(shù)為,且函數(shù)在處取得極大值,當時,;當時,;當時,.時,,時,,當或時,;當時,.故選:【點睛】根據(jù)函數(shù)取得極大值,判斷導函數(shù)在極值點附近左側(cè)為正,右側(cè)為負,由正負情況討論圖像可能成立的選項,是判斷圖像問題常見方法,有一定難度.4、C【解析】
作出不等式組表示的平面區(qū)域,作出目標函數(shù)對應的直線,結(jié)合圖象知當直線過點時,取得最大值.【詳解】解:作出約束條件表示的可行域是以為頂點的三角形及其內(nèi)部,如下圖表示:當目標函數(shù)經(jīng)過點時,取得最大值,最大值為.故選:C.【點睛】本題主要考查線性規(guī)劃等基礎(chǔ)知識;考查運算求解能力,數(shù)形結(jié)合思想,應用意識,屬于中檔題.5、B【解析】
首先根據(jù)特殊角的三角函數(shù)值將復數(shù)化為,求出,再利用復數(shù)的幾何意義即可求解.【詳解】,,則在復平面內(nèi)對應的點的坐標為,位于第二象限.故選:B【點睛】本題考查了復數(shù)的幾何意義、共軛復數(shù)的概念、特殊角的三角函數(shù)值,屬于基礎(chǔ)題.6、C【解析】
恰有兩個極值點,則恰有兩個不同的解,求出可確定是它的一個解,另一個解由方程確定,令通過導數(shù)判斷函數(shù)值域求出方程有一個不是1的解時t應滿足的條件.【詳解】由題意知函數(shù)的定義域為,.因為恰有兩個極值點,所以恰有兩個不同的解,顯然是它的一個解,另一個解由方程確定,且這個解不等于1.令,則,所以函數(shù)在上單調(diào)遞增,從而,且.所以,當且時,恰有兩個極值點,即實數(shù)的取值范圍是.故選:C【點睛】本題考查利用導數(shù)研究函數(shù)的單調(diào)性與極值,函數(shù)與方程的應用,屬于中檔題.7、C【解析】
通過圖表所給數(shù)據(jù),逐個選項驗證.【詳解】根據(jù)圖示數(shù)據(jù)可知選項A正確;對于選項B:,正確;對于選項C:,故C不正確;對于選項D:,正確.選C.【點睛】本題主要考查柱狀圖是識別和數(shù)據(jù)分析,題目較為簡單.8、D【解析】
三個單位的人數(shù)可能為2,2,1或3,1,1,求出甲、乙兩人在同一個單位的概率,利用互為對立事件的概率和為1即可解決.【詳解】由題意,三個單位的人數(shù)可能為2,2,1或3,1,1;基本事件總數(shù)有種,若為第一種情況,且甲、乙兩人在同一個單位,共有種情況;若為第二種情況,且甲、乙兩人在同一個單位,共有種,故甲、乙兩人在同一個單位的概率為,故甲、乙兩人不在同一個單位的概率為.故選:D.【點睛】本題考查古典概型的概率公式的計算,涉及到排列與組合的應用,在正面情況較多時,可以先求其對立事件,即甲、乙兩人在同一個單位的概率,本題有一定難度.9、B【解析】
設(shè)公差為,由已知可得,進而求出的通項公式,即可求解.【詳解】設(shè)公差為,,,,.故選:B.【點睛】本題考查等差數(shù)列的基本量計算以及前項和,屬于基礎(chǔ)題.10、A【解析】
設(shè)切點為,對求導,得到,從而得到切線的斜率,結(jié)合直線方程的點斜式化簡得切線方程,聯(lián)立方程組,求得結(jié)果.【詳解】設(shè)切點為,∵,∴由①得,代入②得,則,,故選A.【點睛】該題考查的是有關(guān)直線與曲線相切求參數(shù)的問題,涉及到的知識點有導數(shù)的幾何意義,直線方程的點斜式,屬于簡單題目.11、A【解析】幾何體為一個三棱錐,高為4,底面為一個等腰直角三角形,直角邊長為4,所以體積是,選A.12、A【解析】
設(shè)出A,B的坐標,利用導數(shù)求出過A,B的切線的斜率,結(jié)合,可得x1x2=﹣1.再寫出OA,OB所在直線的斜率,作積得答案.【詳解】解:設(shè)A(),B(),由拋物線C:x2=1y,得,則y′.∴,,由,可得,即x1x2=﹣1.又,,∴.故選:A.點睛:(1)本題主要考查拋物線的簡單幾何性質(zhì),考查直線和拋物線的位置關(guān)系,意在考查學生對這些基礎(chǔ)知識的掌握能力和分析推理能力.(2)解答本題的關(guān)鍵是解題的思路,由于與切線有關(guān),所以一般先設(shè)切點,先設(shè)A,B,,再求切線PA,PB方程,求點P坐標,再根據(jù)得到最后求直線與的斜率之積.如果先設(shè)點P的坐標,計算量就大一些.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先化簡集合A,再求A∪B得解.【詳解】由題得A={0,1},所以A∪B={-1,0,1}.故答案為{-1,0,1}【點睛】本題主要考查集合的化簡和并集運算,意在考查學生對這些知識的理解掌握水平和分析推理能力.14、【解析】
先根據(jù)弦長,半徑,弦心距之間的關(guān)系列式求得,代入整理得,利用基本不等式求得最值.【詳解】解:圓的圓心為,則到直線的距離為,由直線截圓所得的弦長為可得,整理得,解得或(舍去),令,又,當且僅當時,等號成立,則.故答案為:.【點睛】本題考查直線和圓的位置關(guān)系,考核基本不等式求最值,關(guān)鍵是對目標式進行變形,變成能用基本不等式求最值的形式,也可用換元法進行變形,是中檔題.15、1【解析】
根據(jù)為定義在上的偶函數(shù),得,再根據(jù)當時,(為常數(shù))求解.【詳解】因為為定義在上的偶函數(shù),所以,又因為當時,,所以,所以實數(shù)的值為1.故答案為:1【點睛】本題主要考查函數(shù)奇偶性的應用,還考查了運算求解的能力,屬于基礎(chǔ)題.16、40【解析】
設(shè)等比數(shù)列的公比為,根據(jù),可得,因為,根據(jù)均值不等式,即可求得答案.【詳解】設(shè)等比數(shù)列的公比為,,,等比數(shù)列的各項為正數(shù),,,當且僅當,即時,取得最小值.故答案為:.【點睛】本題主要考查了求數(shù)列值的最值問題,解題關(guān)鍵是掌握等比數(shù)列通項公式和靈活使用均值不等式,考查了分析能力和計算能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)直線恒過定點,詳見解析【解析】
(1)依題意由橢圓的簡單性質(zhì)可求出,即得橢圓C的方程;(2)設(shè)直線的方程為:,聯(lián)立直線的方程與橢圓方程可求得點的坐標,同理可求出點的坐標,根據(jù)的坐標可求出直線的方程,將其化簡成點斜式,即可求出定點坐標.【詳解】(1)由題有,.∴,∴.∴橢圓方程為.(2)設(shè)直線的方程為:,則∴或,∴,同理,當時,由有.∴,同理,又∴,當時,∴直線的方程為∴直線恒過定點,當時,此時也過定點..綜上:直線恒過定點.【點睛】本題主要考查利用橢圓的簡單性質(zhì)求橢圓的標準方程,以及直線與橢圓的位置關(guān)系應用,定點問題的求法等,意在考查學生的邏輯推理能力和數(shù)學運算能力,屬于難題.18、(1)1;(2)證明見解析.【解析】
(1)將不等式化為,求解得出,根據(jù)解集確定正數(shù)的值;(2)利用基本不等式以及不等式的性質(zhì),得出,,,三式相加,即可得證.【詳解】(1)解:不等式,即不等式∴,而,于是依題意得(2)證明:由(1)知,原不等式可化為∵,∴,同理,三式相加得,當且僅當時取等號綜上.【點睛】本題主要考查了求絕對值不等式中參數(shù)的范圍以及基本不等式的應用,屬于中檔題.19、(1)(2)【解析】
(1)將曲線的方程化成直角坐標方程為,當時,線段取得最小值,利用幾何法求弦長即可.(2)當點與點不重合時,設(shè),由利用向量的數(shù)量積等于可求解,最后驗證當點與點重合時也滿足.【詳解】解曲線的方程化成直角坐標方程為即圓心,半徑,曲線為過定點的直線,易知在圓內(nèi),當時,線段長最小為當點與點不重合時,設(shè),化簡得當點與點重合時,也滿足上式,故點的軌跡方程為【點睛】本題考查了極坐標與普通方程的互化、直線與圓的位置關(guān)系、列方程求動點的軌跡方程,屬于基礎(chǔ)題.20、(1);(2)是定值,.【解析】
(1)設(shè)出M的坐標為,采用直接法求曲線的方程;(2)設(shè)AB的方程為,,,,求出AT方程,聯(lián)立直線方程得D點的坐標,同理可得E點的坐標,最后利用向量數(shù)量積算即可.【詳解】(1)設(shè)動點M的坐標為,由知∥,又在直線上,所以P點坐標為,又,點為的中點,所以,,,由得,即;(2)設(shè)直線AB的方程為,代入得,設(shè),,則,,設(shè),則,所以AT的直線方程為即,令,則,所以D點的坐標為,同理E點的坐標為,于
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度高空作業(yè)安全生產(chǎn)施工合同集2篇
- 二零二五年度綠色環(huán)保木工支模項目合同4篇
- 2025版木箱紙箱包裝設(shè)計創(chuàng)新與市場推廣合同4篇
- 2025年度個人購房合同產(chǎn)權(quán)轉(zhuǎn)移登記流程4篇
- 危險品運輸車輛駕駛員崗前培訓考核試卷
- 2025版二零二五年度現(xiàn)代木工清工分包合同模板4篇
- 【新課標Ⅲ卷】高三第二次全國大聯(lián)考語文試卷(含答案)
- 愛學習有自信幼兒舞蹈創(chuàng)編15課件講解
- 2025年專業(yè)期刊發(fā)行協(xié)議
- 2025年合伙勞動分工協(xié)議
- 2024公路瀝青路面結(jié)構(gòu)內(nèi)部狀況三維探地雷達快速檢測規(guī)程
- 2024年高考真題-地理(河北卷) 含答案
- 中國高血壓防治指南(2024年修訂版)解讀課件
- 食材配送服務方案投標方案(技術(shù)方案)
- 足療店營銷策劃方案
- 封條(標準A4打印封條)
- 2024年北京控股集團有限公司招聘筆試參考題庫含答案解析
- 延遲交稿申請英文
- 運動技能學習與控制課件第十章動作技能的指導與示范
- 石油天然氣建設(shè)工程交工技術(shù)文件編制規(guī)范(SYT68822023年)交工技術(shù)文件表格儀表自動化安裝工程
- 中醫(yī)治療“濕疹”醫(yī)案72例
評論
0/150
提交評論