




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
專題07直線與圓的位置關(guān)系【知識梳理】1、直線與圓的位置關(guān)系:(1)直線與圓相交,有兩個公共點(diǎn);(2)直線與圓相切,只有一個公共點(diǎn);(3)直線與圓相離,沒有公共點(diǎn).2、直線與圓的位置關(guān)系的判定:(1)代數(shù)法:判斷直線與圓C的方程組成的方程組是否有解.如果有解,直線與圓C有公共點(diǎn).有兩組實數(shù)解時,直線與圓C相交;有一組實數(shù)解時,直線與圓C相切;無實數(shù)解時,直線與圓C相離.(2)幾何法:由圓C的圓心到直線的距離與圓的半徑的關(guān)系判斷:當(dāng)時,直線與圓C相交;當(dāng)時,直線與圓C相切;當(dāng)時,直線與圓C相離.3、圓的切線方程的求法(1)點(diǎn)在圓上,如圖.法一:利用切線的斜率與圓心和該點(diǎn)連線的斜率的乘積等于,即.法二:圓心到直線的距離等于半徑.(2)點(diǎn)在圓外,則設(shè)切線方程:,變成一般式:,因為與圓相切,利用圓心到直線的距離等于半徑,解出.詮釋:因為此時點(diǎn)在圓外,所以切線一定有兩條,即方程一般是兩個根,若方程只有一個根,則還有一條切線的斜率不存在,務(wù)必要把這條切線補(bǔ)上.常見圓的切線方程:(1)過圓上一點(diǎn)的切線方程是;(2)過圓上一點(diǎn)的切線方程是.4、求直線被圓截得的弦長的方法(1)應(yīng)用圓中直角三角形:半徑,圓心到直線的距離,弦長具有的關(guān)系,這也是求弦長最常用的方法.(2)利用交點(diǎn)坐標(biāo):若直線與圓的交點(diǎn)坐標(biāo)易求出,求出交點(diǎn)坐標(biāo)后,直接用兩點(diǎn)間的距離公式計算弦長.(3)利用弦長公式:設(shè)直線,與圓的兩交點(diǎn),將直線方程代入圓的方程,消元后利用根與系數(shù)關(guān)系得弦長:=.【專題過關(guān)】【考點(diǎn)目錄】考點(diǎn)1:直線與圓的位置關(guān)系考點(diǎn)2:直線與圓相交的性質(zhì)——韋達(dá)定理及應(yīng)用考點(diǎn)3:切線問題考點(diǎn)4:切點(diǎn)弦問題考點(diǎn)5:弦長問題考點(diǎn)6:面積問題考點(diǎn)7:直線與圓中的定點(diǎn)定值問題【典型例題】考點(diǎn)1:直線與圓的位置關(guān)系1.(2021·黑龍江·齊齊哈爾市恒昌中學(xué)校高二期中)直線與圓的位置關(guān)系是(
)A.相離 B.相切 C.相交 D.不確定2.(2020·四川·瀘州老窖天府中學(xué)高二期中(理))已知點(diǎn)在圓上,則直線與圓的位置關(guān)系是(
)A.相交 B.相切 C.相離 D.無法判斷3.(2021·黑龍江·牡丹江一中高二期中)直線與圓的位置關(guān)系是(
)A.相切 B.相交 C.相離 D.相交或相切4.(2022·上海市控江中學(xué)高二期中)若直線與曲線恰有兩個不同公共點(diǎn),則實數(shù)k的取值范圍是(
)A. B. C. D.5.(2021·浙江臺州·高二期中)直線與圓有兩個不同的交點(diǎn),則實數(shù)m的取值范圍是(
)A. B.C.或 D.或6.(多選題)(2022·廣東·汕頭市潮南區(qū)陳店實驗學(xué)校高二期中)已知直線與圓,則(
)A.直線與圓C相離B.直線與圓C相交C.圓C上到直線的距離為1的點(diǎn)共有2個D.圓C上到直線的距離為1的點(diǎn)共有3個7.(2021·四川眉山·高二期中)圓與直線的位置關(guān)系為__________.8.(2021·遼寧實驗中學(xué)高二期中)已知圓上至少存在兩點(diǎn)到直線的距離為1,則實數(shù)的取值范圍是___________.9.(2022·全國·高二課時練習(xí))已知圓上有且僅有四個點(diǎn)到直線的距離為1,則實數(shù)c的取值范圍是______.考點(diǎn)2:直線與圓相交的性質(zhì)——韋達(dá)定理及應(yīng)用10.(2021·安徽·馬鞍山二中高二期中)已知一個動點(diǎn)P在圓上移動,它與定點(diǎn)所連線段的中點(diǎn)為M.(1)求點(diǎn)M的軌跡方程;(2)是否存在過定點(diǎn)的直線l與點(diǎn)M的軌跡方程交于不同的兩點(diǎn),,且滿足,若存在,求直線l的方程;若不存在,說明理由.11.(2021·云南大理·高二期中)已知圓的圓心C在直線上,且圓經(jīng)過,兩點(diǎn).(1)求圓的方程;(2)已知點(diǎn),過原點(diǎn)的直線與圓交于,兩點(diǎn),且.若,求直線的斜率的取值范圍.12.(2021·浙江省象山縣第二中學(xué)高二期中)已知圓過點(diǎn),且圓心在軸.(1)求圓的標(biāo)準(zhǔn)方程;(2)圓與軸的負(fù)半軸的交點(diǎn)為,過點(diǎn)作兩條直線分別交圓于,兩點(diǎn),且,求證:直線恒過定點(diǎn).13.(2021·廣東外語外貿(mào)大學(xué)實驗中學(xué)高二期中)已知過點(diǎn)且斜率為k的直線l與圓交于M,N兩點(diǎn).(1)求k的取值范圍;(2)若,其中O為坐標(biāo)原點(diǎn),求.14.(2021·廣東·廣州市第七十五中學(xué)高二期中)已知圓C經(jīng)過兩點(diǎn)A(2,2),B(3,3),且圓心C在直線x-y+1=0上.(1)求圓C的標(biāo)準(zhǔn)方程;(2)設(shè)直線l:y=kx+1與圓C相交于M,N兩點(diǎn),O為坐標(biāo)原點(diǎn),若,求|MN|的值.考點(diǎn)3:切線問題15.(2021·安徽·合肥市第六中學(xué)高二期中(理))圓心為C的圓經(jīng)過點(diǎn)和,且圓心C在直線上(1)求圓心為C的圓的方程;(2)過點(diǎn)作圓C的切線,求切線的方程.16.(多選題)(2021·湖北·高二期中)設(shè)有一組圓,下列命題正確的是(
)A.不論如何變化,圓心始終在一條直線上B.存在圓經(jīng)過點(diǎn)C.存在定直線與圓都相切D.經(jīng)過點(diǎn)的圓有且只有一個17.(2021·安徽滁州·高二期中)過圓上一點(diǎn)作圓O的切線l,則直線l的方程是(
)A. B.C. D.18.(2021·天津市咸水沽第二中學(xué)高二期中)過點(diǎn)作圓的切線,則的方程為(
)A. B.或C. D.或19.(2021·山東濟(jì)寧·高二期中)過點(diǎn)的直線l與圓相切,則直線l的方程是(
)A.或 B.C.或 D.20.(2022·四川·瀘縣五中高二期中(文))已知直線是圓的一條對稱軸,過點(diǎn)向圓作切線,切點(diǎn)為,則(
)A. B. C. D.21.(2022·甘肅·臨澤縣第一中學(xué)高二期中(理))直線平分圓的周長,過點(diǎn)作圓C的一條切線,切點(diǎn)為Q,則(
)A.5 B.4 C.3 D.222.(2022·上?!とA東師范大學(xué)附屬東昌中學(xué)高二期中)經(jīng)過圓上一點(diǎn)且與圓相切的直線的一般式方程為__________.23.(2021·湖南·常德市第二中學(xué)高二期中)已知圓C:x2+y2=20,則過點(diǎn)P(4,2)的圓的切線方程是________.24.(2022·上海理工大學(xué)附屬中學(xué)高二期中)過點(diǎn)且與圓相切的直線的方程是______.25.(2021·四川省敘永第一中學(xué)校高二期中(文))過直線上的動點(diǎn)作圓的切線,切點(diǎn)為,則切線長的最小值為____________.26.(2021·黑龍江·齊齊哈爾市恒昌中學(xué)校高二期中)已知圓與直線相切,則___________.考點(diǎn)4:切點(diǎn)弦問題27.(2021·福建寧德·高二期中)過圓外一點(diǎn)引圓的兩條切線,則經(jīng)過兩切點(diǎn)的直線方程是________.28.(2021·廣東·廣州市第六十五中學(xué)高二期中)過點(diǎn)作圓的兩條切線,設(shè)兩切點(diǎn)分別為A、B,則直線的方程為_________.29.(2021·安徽·合肥一中高二期中)已知圓,過動點(diǎn)分別做直線、與圓相切,切點(diǎn)為、,設(shè)經(jīng)過、兩點(diǎn)的直線為,則動直線恒過的定點(diǎn)坐標(biāo)為__________.30.(2021·安徽·屯溪一中高二期中)已知直線是圓的對稱軸.過點(diǎn)作圓的兩條切線,切點(diǎn)分別為、,則直線的方程為(
)A. B. C. D.31.(2021·四川省綿陽第一中學(xué)高二期中)過點(diǎn)作圓C:的兩條切線,切點(diǎn)分別為A,B,則直線AB的方程為(
)A. B. C. D.32.(2020·安徽·六安市城南中學(xué)高二期中(理))過原點(diǎn)作圓的兩條切線,設(shè)切點(diǎn)分別為、,則線段的長為(
)A. B. C. D.考點(diǎn)5:弦長問題33.(2021·廣東·化州市第三中學(xué)高二期中)過點(diǎn)M(2,2)的直線l與圓x2+y2﹣2x﹣8=0相交于A,B兩點(diǎn),則|AB|的最小值為_____;此時直線l的方程為_______.34.(2021·湖北黃岡·高二期中)已知直線與圓有公共點(diǎn),則的取值范圍為______,所有的弦中,最長的弦的長度為______.35.(2021·廣東·潮州市湘橋區(qū)南春中學(xué)高二期中)已知三點(diǎn)在圓C上,直線,(1)求圓C的方程;(2)判斷直線與圓C的位置關(guān)系;若相交,求直線被圓C截得的弦長.36.(2021·廣東·新會陳經(jīng)綸中學(xué)高二期中)已知圓,直線.(1)寫出圓的圓心坐標(biāo)和半徑,并判斷直線與圓的位置關(guān)系;(2)設(shè)直線與圓交于A、兩點(diǎn),若直線的傾斜角為120°,求弦的長.37.(2022·山東·濟(jì)南外國語學(xué)校高二期中)已知圓的圓心在軸上,且經(jīng)過點(diǎn).(1)求線段的垂直平分線方程;(2)求圓的標(biāo)準(zhǔn)方程;(3)若過點(diǎn)的直線與圓相交于兩點(diǎn),且,求直線的方程.38.(2021·湖北宜昌·高二期中)已知圓M過點(diǎn).(1)求圓M的方程;(2)若直線與圓M相交所得的弦長為,求b的值.39.(2022·上?!とA東師范大學(xué)附屬東昌中學(xué)高二期中)直線被圓所截得的弦長為__________40.(2021·福建·晉江市第一中學(xué)高二期中)已知是圓內(nèi)一點(diǎn),則過點(diǎn)最短的弦長為(
)A. B. C. D.41.(2022·全國·高二期中)若直線與圓所截得的弦長為,則實數(shù)為(
).A.或 B.1或3 C.3或6 D.0或442.(2022·江蘇·淮陰中學(xué)高二期中)已知直線與圓相交于、兩點(diǎn),若,則實數(shù)的值為(
)A.或 B.或 C.或 D.或43.(2022·廣東·仲元中學(xué)高二期中)已知直線:與圓相交于,兩點(diǎn),若,則非零實數(shù)的值為(
)A. B. C. D.考點(diǎn)6:面積問題44.(2021·廣東·汕頭市潮陽區(qū)棉城中學(xué)高二期中)過直線上任意點(diǎn)作圓的兩條切線,切點(diǎn)分別為,當(dāng)切線長最小時,切線長為_________;同時的面積為_______.45.(2021·廣西·防城港市防城中學(xué)高二期中)已知點(diǎn),點(diǎn),直線過定點(diǎn).(1)求以線段AB為直徑的圓的標(biāo)準(zhǔn)方程;(2)記(1)中求得的圓的圓心為C,(i)若直線l與圓C相切,求直線l的方程;(ii)若直線l與圓C交于,PQ兩點(diǎn),求面積的最大值,并求此時直線l的方程.46.(2020·四川省成都高新實驗中學(xué)高二期中)已知直線與圓相交于,兩點(diǎn),求:(1)交點(diǎn),的坐標(biāo)(2)的面積.47.(2020·湖北·高二期中)直線與圓交于、兩點(diǎn),則的面積是_________.48.(2021·廣東·佛山一中高二期中)已知圓的方程為,設(shè)該圓過點(diǎn)的最長弦和最短弦分別為和,則四邊形面積為(
)A. B. C. D.49.(2021·福建龍巖·高二期中)設(shè)直線與圓相交于、兩點(diǎn),且的面積為,則(
)A. B. C. D.50.(2021·江西南昌·高二期中(理))已知圓的方程為,設(shè)該圓過點(diǎn)的最長弦和最短弦分別為AC和BD,則四邊形ABCD面積為(
)A. B. C.8 D.13考點(diǎn)7:直線與圓中的定點(diǎn)定值問題51.(2021·山東濰坊·高二期中)已知圓的圓心與點(diǎn)關(guān)于直線對稱,且圓與軸相切于原點(diǎn).(1)求圓的方程;(2)過原點(diǎn)的兩條直線與圓分別交于兩點(diǎn),直線的斜率之積為,為垂足,是否存在定點(diǎn),使得為定值,若存在,求出點(diǎn)坐標(biāo);若不存在,說明理由.52.(2021·全國·高二期中)已知圓經(jīng)過點(diǎn),及.經(jīng)過坐標(biāo)原點(diǎn)的斜率為的直線與圓交于,兩點(diǎn).(1)求圓的標(biāo)準(zhǔn)方程;(2)若點(diǎn),分別記直線?直線的斜率為?,求的值.53.(2020·浙江溫州·高二期中)已知圓:,直線:.(1)當(dāng)直線與圓相交于,兩點(diǎn),且,求直線的方程.(2)已知點(diǎn)是圓上任意一點(diǎn),在軸上是否存在兩個定點(diǎn),,使得?若存在,求出點(diǎn),的坐標(biāo);若不存在,說明理由.54.(2020·遼寧·大連八中高二期中)已知圓與軸的正半軸交于點(diǎn),直線與圓交于不同的兩點(diǎn),.(1)求實數(shù)的取值范圍;(2)設(shè)直線,的斜率分別是,試問是否為定值?若是定值,求出該定值;若不是定值,請說明理由;55.(2021·吉林·長春外國語學(xué)校高二期中)已知圓過點(diǎn),且與圓
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度事業(yè)單位聘用合同解除材料歸檔與信息安全保密服務(wù)合同
- 科技企業(yè)如何借鑒網(wǎng)易云音樂的營銷策略
- 健身中心與健身房加盟商合作協(xié)議書(2025年度)
- 二零二五年度醫(yī)院招聘合同與人才引進(jìn)政策協(xié)議
- 2025年度智慧社區(qū)安防監(jiān)控系統(tǒng)維修保養(yǎng)合同
- 二零二五年度工廠生產(chǎn)工人勞動保障及福利合同
- 2025至2030年中國經(jīng)彈燈芯絨面料數(shù)據(jù)監(jiān)測研究報告
- 2025年度高空作業(yè)包工頭與工人安全責(zé)任合同樣本
- 二零二五年度婚戀糾紛財產(chǎn)分割賠償合同
- 二零二五年度公司免責(zé)的酒店經(jīng)營管理協(xié)議
- 高教版2023年中職教科書《語文》(基礎(chǔ)模塊)上冊教案全冊
- 存款代持協(xié)議書范文模板
- 2023年部編人教版三年級《道德與法治》下冊全冊課件【全套】
- 基礎(chǔ)模塊下冊《中國人民站起來了》2
- 光伏項目施工總進(jìn)度計劃表(含三級)
- DB32-T 4757-2024 連棟塑料薄膜溫室建造技術(shù)規(guī)范
- 2024年云上貴州大數(shù)據(jù)(集團(tuán))有限公司招聘筆試沖刺題(帶答案解析)
- 部編版小學(xué)語文四年級下冊教師教學(xué)用書(教學(xué)參考)完整版
- 風(fēng)光高壓變頻器用戶手冊最新2011-11-17
- 河南省中等職業(yè)教育技能大賽組委會辦公室
- 高考英語聽力試音文本
評論
0/150
提交評論