![陜西省西安市蓮湖區(qū)七十中2025屆高三一診考試數(shù)學(xué)試卷含解析_第1頁(yè)](http://file4.renrendoc.com/view12/M07/02/00/wKhkGWdEvv6ATZV6AAKRKiNv8SA059.jpg)
![陜西省西安市蓮湖區(qū)七十中2025屆高三一診考試數(shù)學(xué)試卷含解析_第2頁(yè)](http://file4.renrendoc.com/view12/M07/02/00/wKhkGWdEvv6ATZV6AAKRKiNv8SA0592.jpg)
![陜西省西安市蓮湖區(qū)七十中2025屆高三一診考試數(shù)學(xué)試卷含解析_第3頁(yè)](http://file4.renrendoc.com/view12/M07/02/00/wKhkGWdEvv6ATZV6AAKRKiNv8SA0593.jpg)
![陜西省西安市蓮湖區(qū)七十中2025屆高三一診考試數(shù)學(xué)試卷含解析_第4頁(yè)](http://file4.renrendoc.com/view12/M07/02/00/wKhkGWdEvv6ATZV6AAKRKiNv8SA0594.jpg)
![陜西省西安市蓮湖區(qū)七十中2025屆高三一診考試數(shù)學(xué)試卷含解析_第5頁(yè)](http://file4.renrendoc.com/view12/M07/02/00/wKhkGWdEvv6ATZV6AAKRKiNv8SA0595.jpg)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
陜西省西安市蓮湖區(qū)七十中2025屆高三一診考試數(shù)學(xué)試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知雙曲線:的左右焦點(diǎn)分別為,,為雙曲線上一點(diǎn),為雙曲線C漸近線上一點(diǎn),,均位于第一象限,且,,則雙曲線的離心率為()A. B. C. D.2.復(fù)數(shù)的虛部為()A.—1 B.—3 C.1 D.23.有一改形塔幾何體由若千個(gè)正方體構(gòu)成,構(gòu)成方式如圖所示,上層正方體下底面的四個(gè)頂點(diǎn)是下層正方體上底面各邊的中點(diǎn).已知最底層正方體的棱長(zhǎng)為8,如果改形塔的最上層正方體的邊長(zhǎng)小于1,那么該塔形中正方體的個(gè)數(shù)至少是()A.8 B.7 C.6 D.44.年部分省市將實(shí)行“”的新高考模式,即語(yǔ)文、數(shù)學(xué)、英語(yǔ)三科必選,物理、歷史二選一,化學(xué)、生物、政治、地理四選二,若甲同學(xué)選科沒(méi)有偏好,且不受其他因素影響,則甲同學(xué)同時(shí)選擇歷史和化學(xué)的概率為A. B.C. D.5.為比較甲、乙兩名高中學(xué)生的數(shù)學(xué)素養(yǎng),對(duì)課程標(biāo)準(zhǔn)中規(guī)定的數(shù)學(xué)六大素養(yǎng)進(jìn)行指標(biāo)測(cè)驗(yàn)(指標(biāo)值滿分為100分,分值高者為優(yōu)),根據(jù)測(cè)驗(yàn)情況繪制了如圖所示的六大素養(yǎng)指標(biāo)雷達(dá)圖,則下面敘述不正確的是()A.甲的數(shù)據(jù)分析素養(yǎng)優(yōu)于乙 B.乙的數(shù)據(jù)分析素養(yǎng)優(yōu)于數(shù)學(xué)建模素養(yǎng)C.甲的六大素養(yǎng)整體水平優(yōu)于乙 D.甲的六大素養(yǎng)中數(shù)學(xué)運(yùn)算最強(qiáng)6.已知函數(shù),若關(guān)于的不等式恰有1個(gè)整數(shù)解,則實(shí)數(shù)的最大值為()A.2 B.3 C.5 D.87.已知函數(shù)的最小正周期為的圖象向左平移個(gè)單位長(zhǎng)度后關(guān)于軸對(duì)稱,則的單調(diào)遞增區(qū)間為()A. B.C. D.8.函數(shù)與的圖象上存在關(guān)于直線對(duì)稱的點(diǎn),則的取值范圍是()A. B. C. D.9.甲、乙兩名學(xué)生的六次數(shù)學(xué)測(cè)驗(yàn)成績(jī)(百分制)的莖葉圖如圖所示.①甲同學(xué)成績(jī)的中位數(shù)大于乙同學(xué)成績(jī)的中位數(shù);②甲同學(xué)的平均分比乙同學(xué)的平均分高;③甲同學(xué)的平均分比乙同學(xué)的平均分低;④甲同學(xué)成績(jī)的方差小于乙同學(xué)成績(jī)的方差.以上說(shuō)法正確的是()A.③④ B.①② C.②④ D.①③④10.的二項(xiàng)展開式中,的系數(shù)是()A.70 B.-70 C.28 D.-2811.已知函數(shù),,若總有恒成立.記的最小值為,則的最大值為()A.1 B. C. D.12.如圖所示,在平面直角坐標(biāo)系中,是橢圓的右焦點(diǎn),直線與橢圓交于,兩點(diǎn),且,則該橢圓的離心率是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓:的左,右焦點(diǎn)分別為,,過(guò)的直線交橢圓于,兩點(diǎn),若,且的三邊長(zhǎng),,成等差數(shù)列,則的離心率為__________.14.執(zhí)行如圖所示的偽代碼,若輸出的y的值為13,則輸入的x的值是_______.15.記為等比數(shù)列的前n項(xiàng)和,已知,,則_______.16.在中,角的對(duì)邊分別為,且.若為鈍角,,則的面積為____________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知,,設(shè)函數(shù),.(1)若,求不等式的解集;(2)若函數(shù)的最小值為1,證明:.18.(12分)如圖,在四棱錐P—ABCD中,四邊形ABCD為平行四邊形,BD⊥DC,△PCD為正三角形,平面PCD⊥平面ABCD,E為PC的中點(diǎn).(1)證明:AP∥平面EBD;(2)證明:BE⊥PC.19.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)若函數(shù)在上存在兩個(gè)極值點(diǎn),,且,證明.20.(12分)已知橢圓()的離心率為,且經(jīng)過(guò)點(diǎn).(1)求橢圓的方程;(2)過(guò)點(diǎn)作直線與橢圓交于不同的兩點(diǎn),,試問(wèn)在軸上是否存在定點(diǎn)使得直線與直線恰關(guān)于軸對(duì)稱?若存在,求出點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.21.(12分)已知x,y,z均為正數(shù).(1)若xy<1,證明:|x+z|?|y+z|>4xyz;(2)若=,求2xy?2yz?2xz的最小值.22.(10分)已知橢圓:(),四點(diǎn),,,中恰有三點(diǎn)在橢圓上.(1)求橢圓的方程;(2)設(shè)橢圓的左右頂點(diǎn)分別為.是橢圓上異于的動(dòng)點(diǎn),求的正切的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】由雙曲線的方程的左右焦點(diǎn)分別為,為雙曲線上的一點(diǎn),為雙曲線的漸近線上的一點(diǎn),且都位于第一象限,且,可知為的三等分點(diǎn),且,點(diǎn)在直線上,并且,則,,設(shè),則,解得,即,代入雙曲線的方程可得,解得,故選D.點(diǎn)睛:本題考查了雙曲線的幾何性質(zhì),離心率的求法,考查了轉(zhuǎn)化思想以及運(yùn)算能力,雙曲線的離心率是雙曲線最重要的幾何性質(zhì),求雙曲線的離心率(或離心率的取值范圍),常見有兩種方法:①求出,代入公式;②只需要根據(jù)一個(gè)條件得到關(guān)于的齊次式,轉(zhuǎn)化為的齊次式,然后轉(zhuǎn)化為關(guān)于的方程(不等式),解方程(不等式),即可得(的取值范圍).2、B【解析】
對(duì)復(fù)數(shù)進(jìn)行化簡(jiǎn)計(jì)算,得到答案.【詳解】所以的虛部為故選B項(xiàng).【點(diǎn)睛】本題考查復(fù)數(shù)的計(jì)算,虛部的概念,屬于簡(jiǎn)單題.3、A【解析】
則從下往上第二層正方體的棱長(zhǎng)為:,從下往上第三層正方體的棱長(zhǎng)為:,從下往上第四層正方體的棱長(zhǎng)為:,以此類推,能求出改形塔的最上層正方體的邊長(zhǎng)小于1時(shí)該塔形中正方體的個(gè)數(shù)的最小值的求法.【詳解】最底層正方體的棱長(zhǎng)為8,則從下往上第二層正方體的棱長(zhǎng)為:,從下往上第三層正方體的棱長(zhǎng)為:,從下往上第四層正方體的棱長(zhǎng)為:,從下往上第五層正方體的棱長(zhǎng)為:,從下往上第六層正方體的棱長(zhǎng)為:,從下往上第七層正方體的棱長(zhǎng)為:,從下往上第八層正方體的棱長(zhǎng)為:,∴改形塔的最上層正方體的邊長(zhǎng)小于1,那么該塔形中正方體的個(gè)數(shù)至少是8.故選:A.【點(diǎn)睛】本小題主要考查正方體有關(guān)計(jì)算,屬于基礎(chǔ)題.4、B【解析】
甲同學(xué)所有的選擇方案共有種,甲同學(xué)同時(shí)選擇歷史和化學(xué)后,只需在生物、政治、地理三科中再選擇一科即可,共有種選擇方案,根據(jù)古典概型的概率計(jì)算公式,可得甲同學(xué)同時(shí)選擇歷史和化學(xué)的概率,故選B.5、D【解析】
根據(jù)所給的雷達(dá)圖逐個(gè)選項(xiàng)分析即可.【詳解】對(duì)于A,甲的數(shù)據(jù)分析素養(yǎng)為100分,乙的數(shù)據(jù)分析素養(yǎng)為80分,故甲的數(shù)據(jù)分析素養(yǎng)優(yōu)于乙,故A正確;對(duì)于B,乙的數(shù)據(jù)分析素養(yǎng)為80分,數(shù)學(xué)建模素養(yǎng)為60分,故乙的數(shù)據(jù)分析素養(yǎng)優(yōu)于數(shù)學(xué)建模素養(yǎng),故B正確;對(duì)于C,甲的六大素養(yǎng)整體水平平均得分為,乙的六大素養(yǎng)整體水平均得分為,故C正確;對(duì)于D,甲的六大素養(yǎng)中數(shù)學(xué)運(yùn)算為80分,不是最強(qiáng)的,故D錯(cuò)誤;故選:D【點(diǎn)睛】本題考查了樣本數(shù)據(jù)的特征、平均數(shù)的計(jì)算,考查了學(xué)生的數(shù)據(jù)處理能力,屬于基礎(chǔ)題.6、D【解析】
畫出函數(shù)的圖象,利用一元二次不等式解法可得解集,再利用數(shù)形結(jié)合即可得出.【詳解】解:函數(shù),如圖所示當(dāng)時(shí),,由于關(guān)于的不等式恰有1個(gè)整數(shù)解因此其整數(shù)解為3,又∴,,則當(dāng)時(shí),,則不滿足題意;當(dāng)時(shí),當(dāng)時(shí),,沒(méi)有整數(shù)解當(dāng)時(shí),,至少有兩個(gè)整數(shù)解綜上,實(shí)數(shù)的最大值為故選:D【點(diǎn)睛】本題主要考查了根據(jù)函數(shù)零點(diǎn)的個(gè)數(shù)求參數(shù)范圍,屬于較難題.7、D【解析】
先由函數(shù)的周期和圖象的平移后的函數(shù)的圖象性質(zhì)得出函數(shù)的解析式,從而得出的解析式,再根據(jù)正弦函數(shù)的單調(diào)遞增區(qū)間得出函數(shù)的單調(diào)遞增區(qū)間,可得選項(xiàng).【詳解】因?yàn)楹瘮?shù)的最小正周期是,所以,即,所以,的圖象向左平移個(gè)單位長(zhǎng)度后得到的函數(shù)解析式為,由于其圖象關(guān)于軸對(duì)稱,所以,又,所以,所以,所以,因?yàn)榈倪f增區(qū)間是:,,由,,得:,,所以函數(shù)的單調(diào)遞增區(qū)間為().故選:D.【點(diǎn)睛】本題主要考查正弦型函數(shù)的周期性,對(duì)稱性,單調(diào)性,圖象的平移,在進(jìn)行圖象的平移時(shí),注意自變量的系數(shù),屬于中檔題.8、C【解析】
由題可知,曲線與有公共點(diǎn),即方程有解,可得有解,令,則,對(duì)分類討論,得出時(shí),取得極大值,也即為最大值,進(jìn)而得出結(jié)論.【詳解】解:由題可知,曲線與有公共點(diǎn),即方程有解,即有解,令,則,則當(dāng)時(shí),;當(dāng)時(shí),,故時(shí),取得極大值,也即為最大值,當(dāng)趨近于時(shí),趨近于,所以滿足條件.故選:C.【點(diǎn)睛】本題主要考查利用導(dǎo)數(shù)研究函數(shù)性質(zhì)的基本方法,考查化歸與轉(zhuǎn)化等數(shù)學(xué)思想,考查抽象概括、運(yùn)算求解等數(shù)學(xué)能力,屬于難題.9、A【解析】
由莖葉圖中數(shù)據(jù)可求得中位數(shù)和平均數(shù),即可判斷①②③,再根據(jù)數(shù)據(jù)集中程度判斷④.【詳解】由莖葉圖可得甲同學(xué)成績(jī)的中位數(shù)為,乙同學(xué)成績(jī)的中位數(shù)為,故①錯(cuò)誤;,,則,故②錯(cuò)誤,③正確;顯然甲同學(xué)的成績(jī)更集中,即波動(dòng)性更小,所以方差更小,故④正確,故選:A【點(diǎn)睛】本題考查由莖葉圖分析數(shù)據(jù)特征,考查由莖葉圖求中位數(shù)、平均數(shù).10、A【解析】試題分析:由題意得,二項(xiàng)展開式的通項(xiàng)為,令,所以的系數(shù)是,故選A.考點(diǎn):二項(xiàng)式定理的應(yīng)用.11、C【解析】
根據(jù)總有恒成立可構(gòu)造函數(shù),求導(dǎo)后分情況討論的最大值可得最大值最大值,即.根據(jù)題意化簡(jiǎn)可得,求得,再換元求導(dǎo)分析最大值即可.【詳解】由題,總有即恒成立.設(shè),則的最大值小于等于0.又,若則,在上單調(diào)遞增,無(wú)最大值.若,則當(dāng)時(shí),,在上單調(diào)遞減,當(dāng)時(shí),,在上單調(diào)遞增.故在處取得最大值.故,化簡(jiǎn)得.故,令,可令,故,當(dāng)時(shí),,在遞減;當(dāng)時(shí),,在遞增.故在處取得極大值,為.故的最大值為.故選:C【點(diǎn)睛】本題主要考查了根據(jù)導(dǎo)數(shù)求解函數(shù)的最值問(wèn)題,需要根據(jù)題意分析導(dǎo)數(shù)中參數(shù)的范圍,再分析函數(shù)的最值,進(jìn)而求導(dǎo)構(gòu)造函數(shù)求解的最大值.屬于難題.12、A【解析】
聯(lián)立直線方程與橢圓方程,解得和的坐標(biāo),然后利用向量垂直的坐標(biāo)表示可得,由離心率定義可得結(jié)果.【詳解】由,得,所以,.由題意知,所以,.因?yàn)?所以,所以.所以,所以,故選:A.【點(diǎn)睛】本題考查了直線與橢圓的交點(diǎn),考查了向量垂直的坐標(biāo)表示,考查了橢圓的離心率公式,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
設(shè),,,根據(jù)勾股定理得出,而由橢圓的定義得出的周長(zhǎng)為,有,便可求出和的關(guān)系,即可求得橢圓的離心率.【詳解】解:由已知,的三邊長(zhǎng),,成等差數(shù)列,設(shè),,,而,根據(jù)勾股定理有:,解得:,由橢圓定義知:的周長(zhǎng)為,有,,在直角中,由勾股定理,,即:,∴離心率.故答案為:.【點(diǎn)睛】本題考查橢圓的離心率以及橢圓的定義的應(yīng)用,考查計(jì)算能力.14、8【解析】
根據(jù)偽代碼逆向運(yùn)算求得結(jié)果.【詳解】輸入,若,則,不合題意若,則,滿足題意本題正確結(jié)果:【點(diǎn)睛】本題考查算法中的語(yǔ)言,屬于基礎(chǔ)題.15、【解析】
設(shè)等比數(shù)列的公比為,將已知條件等式轉(zhuǎn)化為關(guān)系式,求解即可.【詳解】設(shè)等比數(shù)列的公比為,,.故答案為:.【點(diǎn)睛】本題考查等比數(shù)列通項(xiàng)的基本量運(yùn)算,屬于基礎(chǔ)題.16、【解析】
轉(zhuǎn)化為,利用二倍角公式可求解得,結(jié)合余弦定理可得b,再利用面積公式可得解.【詳解】因?yàn)?,所以.又因?yàn)?,且為銳角,所以.由余弦定理得,即,解得,所以故答案為:【點(diǎn)睛】本題考查了正弦定理和余弦定理的綜合應(yīng)用,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)證明見解析【解析】
(1)利用零點(diǎn)分段法,求出各段的取值范圍然后取并集可得結(jié)果.(2)利用絕對(duì)值三角不等式可得,然后使用柯西不等式可得結(jié)果.【詳解】(1)由,所以由當(dāng)時(shí),則所以當(dāng)時(shí),則當(dāng)時(shí),則綜上所述:(2)由當(dāng)且僅當(dāng)時(shí)取等號(hào)所以由,所以所以令根據(jù)柯西不等式,則當(dāng)且僅當(dāng),即取等號(hào)由故,又則【點(diǎn)睛】本題考查使用零點(diǎn)分段法求解絕對(duì)值不等式以及柯西不等式的應(yīng)用,屬基礎(chǔ)題.18、(1)見解析(2)見解析【解析】
(1)連結(jié)AC交BD于點(diǎn)O,連結(jié)OE,利用三角形中位線可得AP∥OE,從而可證AP∥平面EBD;(2)先證明BD⊥平面PCD,再證明PC⊥平面BDE,從而可證BE⊥PC.【詳解】證明:(1)連結(jié)AC交BD于點(diǎn)O,連結(jié)OE因?yàn)樗倪呅蜛BCD為平行四邊形∴O為AC中點(diǎn),又E為PC中點(diǎn),故AP∥OE,又AP平面EBD,OE平面EBD所以AP∥平面EBD
;(2)∵△PCD為正三角形,E為PC中點(diǎn)所以PC⊥DE因?yàn)槠矫鍼CD⊥平面ABCD,平面PCD平面ABCD=CD,又BD平面ABCD,BD⊥CD∴BD⊥平面PCD又PC平面PCD,故PC⊥BD又BDDE=D,BD平面BDE,DE平面BDE故PC⊥平面BDE又BE平面BDE,所以BE⊥PC.【點(diǎn)睛】本題主要考查空間位置關(guān)系的證明,線面平行一般轉(zhuǎn)化為線線平行來(lái)證明,直線與直線垂直通常利用線面垂直來(lái)進(jìn)行證明,側(cè)重考查邏輯推理的核心素養(yǎng).19、(1)若,則在定義域內(nèi)遞增;若,則在上單調(diào)遞增,在上單調(diào)遞減(2)證明見解析【解析】
(1),分,討論即可;(2)由題可得到,故只需證,,即,采用換元法,轉(zhuǎn)化為函數(shù)的最值問(wèn)題來(lái)處理.【詳解】由已知,,若,則在定義域內(nèi)遞增;若,則在上單調(diào)遞增,在上單調(diào)遞減.(2)由題意,對(duì)求導(dǎo)可得從而,是的兩個(gè)變號(hào)零點(diǎn),因此下證:,即證令,即證:,對(duì)求導(dǎo)可得,,,因?yàn)楣剩栽谏蠁握{(diào)遞減,而,從而所以在單調(diào)遞增,所以,即于是【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性以及證明不等式,考查學(xué)生邏輯推理能力、轉(zhuǎn)化與化歸能力,是一道有一定難度的壓軸題.20、(1)(2)見解析【解析】
(1)由題得a,b,c的方程組求解即可(2)直線與直線恰關(guān)于軸對(duì)稱,等價(jià)于的斜率互為相反數(shù),即,整理.設(shè)直線的方程為,與橢圓聯(lián)立,將韋達(dá)定理代入整理即可.【詳解】(1)由題意可得,,又,解得,.所以,橢圓的方程為(2)存在定點(diǎn),滿足直線與直線恰關(guān)于軸對(duì)稱.設(shè)直線的方程為,與橢圓聯(lián)立,整理得,.設(shè),,定點(diǎn).(依題意則由韋達(dá)定理可得,,.直線與直線恰關(guān)于軸對(duì)稱,等價(jià)于的斜率互為相反數(shù).所以,,即得.又,,所以,,整理得,.從而可得,,即,所以,當(dāng),即時(shí),直線與直線恰關(guān)于軸對(duì)稱成立.特別地,當(dāng)直線
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 合同大寫金額標(biāo)準(zhǔn)寫法
- DB6103T 83-2025巨菌草栽培技術(shù)規(guī)范
- 產(chǎn)業(yè)園區(qū)綜合服務(wù)與物業(yè)管理合同
- 2025年環(huán)保技術(shù)項(xiàng)目研發(fā)合同
- 上海居民住房租賃合同細(xì)則
- 專利許可使用權(quán)轉(zhuǎn)讓合同
- 2025年借款合同范本:生活資金周轉(zhuǎn)專用
- 產(chǎn)權(quán)清楚的商業(yè)車位買賣合同
- 三方人才派遣合同模板
- 互聯(lián)網(wǎng)眾籌合作合同范本(修訂)
- 如愿三聲部合唱簡(jiǎn)譜
- 高三數(shù)學(xué)開學(xué)第一課
- 水生野生動(dòng)物保護(hù)與管理
- 115個(gè)低風(fēng)險(xiǎn)組病種目錄
- 系統(tǒng)解剖學(xué)考試重點(diǎn)筆記
- 暖通空調(diào)基礎(chǔ)知識(shí)及識(shí)圖課件
- 防滲墻工程施工用表及填寫要求講義
- 交通信號(hào)控制系統(tǒng)檢驗(yàn)批質(zhì)量驗(yàn)收記錄表
- 校園信息化設(shè)備管理檢查表
- 新版抗拔樁裂縫及強(qiáng)度驗(yàn)算計(jì)算表格(自動(dòng)版)
- API SPEC 5DP-2020鉆桿規(guī)范
評(píng)論
0/150
提交評(píng)論