




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
湖北省應城一中合教中心2025屆高三下學期聯(lián)考數(shù)學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知平面向量,滿足且,若對每一個確定的向量,記的最小值為,則當變化時,的最大值為()A. B. C. D.12.函數(shù)的單調遞增區(qū)間是()A. B. C. D.3.已知m為實數(shù),直線:,:,則“”是“”的()A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件4.已知函數(shù)的一條切線為,則的最小值為()A. B. C. D.5.用電腦每次可以從區(qū)間內自動生成一個實數(shù),且每次生成每個實數(shù)都是等可能性的.若用該電腦連續(xù)生成3個實數(shù),則這3個實數(shù)都小于的概率為()A. B. C. D.6.執(zhí)行如圖所示的程序框圖,若輸出的,則①處應填寫()A. B. C. D.7.雙曲線的漸近線方程為()A. B. C. D.8.一個圓錐的底面和一個半球底面完全重合,如果圓錐的表面積與半球的表面積相等,那么這個圓錐軸截面底角的大小是()A. B. C. D.9.設函數(shù),若在上有且僅有5個零點,則的取值范圍為()A. B. C. D.10.某幾何體的三視圖如圖所示(單位:cm),則該幾何體的體積等于()cm3A. B. C. D.11.已知,則()A. B. C. D.12.在等差數(shù)列中,若為前項和,,則的值是()A.156 B.124 C.136 D.180二、填空題:本題共4小題,每小題5分,共20分。13.在的二項展開式中,只有第5項的二項式系數(shù)最大,則該二項展開式中的常數(shù)項等于_____.14.若,i為虛數(shù)單位,則正實數(shù)的值為______.15.在△ABC中,()⊥(>1),若角A的最大值為,則實數(shù)的值是_______.16.過直線上一點作圓的兩條切線,切點分別為,,則的最小值是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)選修4-4:坐標系與參數(shù)方程:在平面直角坐標系中,曲線:(為參數(shù)),在以平面直角坐標系的原點為極點、軸的正半軸為極軸,且與平面直角坐標系取相同單位長度的極坐標系中,曲線:.(1)求曲線的普通方程以及曲線的平面直角坐標方程;(2)若曲線上恰好存在三個不同的點到曲線的距離相等,求這三個點的極坐標.18.(12分)已知分別是內角的對邊,滿足(1)求內角的大?。?)已知,設點是外一點,且,求平面四邊形面積的最大值.19.(12分)某商店舉行促銷反饋活動,顧客購物每滿200元,有一次抽獎機會(即滿200元可以抽獎一次,滿400元可以抽獎兩次,依次類推).抽獎的規(guī)則如下:在一個不透明口袋中裝有編號分別為1,2,3,4,5的5個完全相同的小球,顧客每次從口袋中摸出一個小球,共摸三次,每次摸出的小球均不放回口袋,若摸得的小球編號一次比一次大(如1,2,5),則獲得一等獎,獎金40元;若摸得的小球編號一次比一次?。ㄈ?,3,1),則獲得二等獎,獎金20元;其余情況獲得三等獎,獎金10元.(1)某人抽獎一次,求其獲獎金額X的概率分布和數(shù)學期望;(2)趙四購物恰好滿600元,假設他不放棄每次抽獎機會,求他獲得的獎金恰好為60元的概率.20.(12分)的內角的對邊分別為,且.(1)求;(2)若,點為邊的中點,且,求的面積.21.(12分)已知函數(shù)(1)若函數(shù)在處取得極值1,證明:(2)若恒成立,求實數(shù)的取值范圍.22.(10分)某貧困地區(qū)幾個丘陵的外圍有兩條相互垂直的直線型公路,以及鐵路線上的一條應開鑿的直線穿山隧道,為進一步改善山區(qū)的交通現(xiàn)狀,計劃修建一條連接兩條公路和山區(qū)邊界的直線型公路,以所在的直線分別為軸,軸,建立平面直角坐標系,如圖所示,山區(qū)邊界曲線為,設公路與曲線相切于點,的橫坐標為.(1)當為何值時,公路的長度最短?求出最短長度;(2)當公路的長度最短時,設公路交軸,軸分別為,兩點,并測得四邊形中,,,千米,千米,求應開鑿的隧道的長度.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
根據(jù)題意,建立平面直角坐標系.令.為中點.由即可求得點的軌跡方程.將變形,結合及平面向量基本定理可知三點共線.由圓切線的性質可知的最小值即為到直線的距離最小值,且當與圓相切時,有最大值.利用圓的切線性質及點到直線距離公式即可求得直線方程,進而求得原點到直線的距離,即為的最大值.【詳解】根據(jù)題意,設,則由代入可得即點的軌跡方程為又因為,變形可得,即,且所以由平面向量基本定理可知三點共線,如下圖所示:所以的最小值即為到直線的距離最小值根據(jù)圓的切線性質可知,當與圓相切時,有最大值設切線的方程為,化簡可得由切線性質及點到直線距離公式可得,化簡可得即所以切線方程為或所以當變化時,到直線的最大值為即的最大值為故選:B【點睛】本題考查了平面向量的坐標應用,平面向量基本定理的應用,圓的軌跡方程問題,圓的切線性質及點到直線距離公式的應用,綜合性強,屬于難題.2、D【解析】
利用輔助角公式,化簡函數(shù)的解析式,再根據(jù)正弦函數(shù)的單調性,并采用整體法,可得結果.【詳解】因為,由,解得,即函數(shù)的增區(qū)間為,所以當時,增區(qū)間的一個子集為.故選D.【點睛】本題考查了輔助角公式,考查正弦型函數(shù)的單調遞增區(qū)間,重點在于把握正弦函數(shù)的單調性,同時對于整體法的應用,使問題化繁為簡,難度較易.3、A【解析】
根據(jù)直線平行的等價條件,求出m的值,結合充分條件和必要條件的定義進行判斷即可.【詳解】當m=1時,兩直線方程分別為直線l1:x+y﹣1=0,l2:x+y﹣2=0滿足l1∥l2,即充分性成立,當m=0時,兩直線方程分別為y﹣1=0,和﹣2x﹣2=0,不滿足條件.當m≠0時,則l1∥l2?,由得m2﹣3m+2=0得m=1或m=2,由得m≠2,則m=1,即“m=1”是“l(fā)1∥l2”的充要條件,故答案為:A【點睛】(1)本題主要考查充要條件的判斷,考查兩直線平行的等價條件,意在考查學生對這些知識的掌握水平和分析推理能力.(2)本題也可以利用下面的結論解答,直線和直線平行,則且兩直線不重合,求出參數(shù)的值后要代入檢驗看兩直線是否重合.4、A【解析】
求導得到,根據(jù)切線方程得到,故,設,求導得到函數(shù)在上單調遞減,在上單調遞增,故,計算得到答案.【詳解】,則,取,,故,.故,故,.設,,取,解得.故函數(shù)在上單調遞減,在上單調遞增,故.故選:.【點睛】本題考查函數(shù)的切線問題,利用導數(shù)求最值,意在考查學生的計算能力和綜合應用能力.5、C【解析】
由幾何概型的概率計算,知每次生成一個實數(shù)小于1的概率為,結合獨立事件發(fā)生的概率計算即可.【詳解】∵每次生成一個實數(shù)小于1的概率為.∴這3個實數(shù)都小于1的概率為.故選:C.【點睛】本題考查獨立事件同時發(fā)生的概率,考查學生基本的計算能力,是一道容易題.6、B【解析】
模擬程序框圖運行分析即得解.【詳解】;;.所以①處應填寫“”故選:B【點睛】本題主要考查程序框圖,意在考查學生對這些知識的理解掌握水平.7、C【解析】
根據(jù)雙曲線的標準方程,即可寫出漸近線方程.【詳解】雙曲線,雙曲線的漸近線方程為,故選:C【點睛】本題主要考查了雙曲線的簡單幾何性質,屬于容易題.8、D【解析】
設圓錐的母線長為l,底面半徑為R,再表達圓錐表面積與球的表面積公式,進而求得即可得圓錐軸截面底角的大小.【詳解】設圓錐的母線長為l,底面半徑為R,則有,解得,所以圓錐軸截面底角的余弦值是,底角大小為.故選:D【點睛】本題考查圓錐的表面積和球的表面積公式,屬于基礎題.9、A【解析】
由求出范圍,結合正弦函數(shù)的圖象零點特征,建立不等量關系,即可求解.【詳解】當時,,∵在上有且僅有5個零點,∴,∴.故選:A.【點睛】本題考查正弦型函數(shù)的性質,整體代換是解題的關鍵,屬于基礎題.10、D【解析】解:根據(jù)幾何體的三視圖知,該幾何體是三棱柱與半圓柱體的組合體,結合圖中數(shù)據(jù),計算它的體積為:V=V三棱柱+V半圓柱=×2×2×1+?π?12×1=(6+1.5π)cm1.故答案為6+1.5π.點睛:根據(jù)幾何體的三視圖知該幾何體是三棱柱與半圓柱體的組合體,結合圖中數(shù)據(jù)計算它的體積即可.11、B【解析】
利用誘導公式以及同角三角函數(shù)基本關系式化簡求解即可.【詳解】,本題正確選項:【點睛】本題考查誘導公式的應用,同角三角函數(shù)基本關系式的應用,考查計算能力.12、A【解析】
因為,可得,根據(jù)等差數(shù)列前項和,即可求得答案.【詳解】,,.故選:A.【點睛】本題主要考查了求等差數(shù)列前項和,解題關鍵是掌握等差中項定義和等差數(shù)列前項和公式,考查了分析能力和計算能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】
由題意可得,再利用二項展開式的通項公式,求得二項展開式常數(shù)項的值.【詳解】的二項展開式的中,只有第5項的二項式系數(shù)最大,,通項公式為,令,求得,可得二項展開式常數(shù)項等于,故答案為1.【點睛】本題主要考查二項式定理的應用,二項展開式的通項公式,二項式系數(shù)的性質,屬于基礎題.14、【解析】
利用復數(shù)模的運算性質,即可得答案.【詳解】由已知可得:,,解得.故答案為:.【點睛】本題考查復數(shù)模的運算性質,考查推理能力與計算能力,屬于基礎題.15、1【解析】
把向量進行轉化,用表示,利用基本不等式可求實數(shù)的值.【詳解】,解得=1.故答案為:1.【點睛】本題主要考查平面向量的數(shù)量積應用,綜合了基本不等式,側重考查數(shù)學運算的核心素養(yǎng).16、【解析】
由切線的性質,可知,切由直角三角形PAO,PBO,即可設,進而表示,由圖像觀察可知進而求出x的范圍,再用的式子表示,整理后利用換元法與雙勾函數(shù)求出最小值.【詳解】由題可知,,設,由切線的性質可知,則顯然,則或(舍去)因為令,則,由雙勾函數(shù)單調性可知其在區(qū)間上單調遞增,所以故答案為:【點睛】本題考查在以直線與圓的位置關系為背景下求向量數(shù)量積的最值問題,應用函數(shù)形式表示所求式子,進而利用分析函數(shù)單調性或基本不等式求得最值,屬于較難題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),;(2),,.【解析】
(1)把曲線的參數(shù)方程與曲線的極坐標方程分別轉化為直角坐標方程;(2)利用圖象求出三個點的極徑與極角.【詳解】解:(1)由消去參數(shù)得,即曲線的普通方程為,又由得即為,即曲線的平面直角坐標方程為(2)∵圓心到曲線:的距離,如圖所示,所以直線與圓的切點以及直線與圓的兩個交點,即為所求.∵,則,直線的傾斜角為,即點的極角為,所以點的極角為,點的極角為,所以三個點的極坐標為,,.【點睛】本題考查圓的參數(shù)方程和普通方程的轉化、直線極坐標方程和直角坐標方程的轉化,消去參數(shù)方程中的參數(shù),就可把參數(shù)方程化為普通方程,消去參數(shù)的常用方法有:①代入消元法;②加減消元法;③乘除消元法;④三角恒等式消元法,極坐標方程化為直角坐標方程,只要將和換成和即可.18、(1)(2)【解析】
(1)首先利用誘導公式及兩角和的余弦公式得到,再由同角三角三角的基本關系得到,即可求出角;(2)由(1)知,是正三角形,設,由余弦定理可得:,則,得到,再利用輔助角公式化簡,最后由正弦函數(shù)的性質求得最大值;【詳解】解:(1)由,,,,,,,;(2)由(1)知,是正三角形,設,由余弦定理得:,,,所以當時有最大值【點睛】本題考查同角三角函數(shù)的基本關系,三角恒等變換公式的應用,三角形面積公式的應用,以及正弦函數(shù)的性質,屬于中檔題.19、(1)分布見解析,期望為;(2).【解析】
(1)先明確X的可能取值,分別求解其概率,然后寫出分布列,利用期望公式可求期望;(2)獲得的獎金恰好為60元,可能是三次二等獎,也可能是一次一等獎,兩次三等獎,然后分別求解概率即可.【詳解】(1)由題意知,隨機變量X的可能取值為10,20,40且,,所以,即隨機變量X的概率分布為X102040P所以隨機變量X的數(shù)學期望.(2)由題意知,趙四有三次抽獎機會,設恰好獲得60元為事件A,因為60=20×3=40+10+10,所以.【點睛】本題主要考查隨機變量的分布列及數(shù)學期望,明確隨機變量的所有取值是求解的第一步,再求解對應的概率,側重考查數(shù)學建模的核心素養(yǎng).20、(1);(2).【解析】
(1)利用正弦定理邊化角,再利用余弦定理求解即可.(2)為為的中線,所以再平方后利用向量的數(shù)量積公式進行求解,再代入可解得,再代入面積公式求解即可.【詳解】(1)由,可得,由余弦定理可得,故.(2)因為為的中線,所以,兩邊同時平方可得,故.因為,所以.所以的面積.【點睛】本題主要考查了利用正余弦定理與面積公式求解三角形的問題,同時也考查了向量在解三角形中的運用,屬于中檔題.21、(1)證明見詳解;(2)【解析】
(1)求出函數(shù)的導函數(shù),由在處取得極值1,可得且.解出,構造函數(shù),分析其單調性,結合,即可得到的范圍,命題得證;
(2)由分離參數(shù),得到恒成立,構造函數(shù),求導函數(shù),再構造函數(shù),進行二次求導.由知,則在上單調遞增.根據(jù)零點存在定理可知有唯一零點,且.由此判斷出時,單調遞減,時,單調遞增,則,即.由得,再次構造函數(shù),求導分析單調性,從而得,即,最終求得,則.【詳解】解:(1)由題知,∵函數(shù)在,處取得極
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 電梯維修漏水合同協(xié)議
- 甘肅承包合同協(xié)議書范本
- 申請延期簽合同協(xié)議
- 玻璃幕墻維護合同協(xié)議
- 生產(chǎn)供貨合作合同協(xié)議
- 玻璃鋼廠出租合同協(xié)議
- 白酒貼牌生產(chǎn)合同協(xié)議
- 環(huán)評類技術服務合同協(xié)議
- 疆模板腳手架合同協(xié)議
- 鹽城到洛陽高速合同協(xié)議
- 2022年四川省阿壩州中考數(shù)學試卷及解析
- 井蓋管理應急預案
- 鵪鶉蛋脫殼機的設計
- 行為安全觀察behaviorbasedsafety研究復習過程
- 動火作業(yè)風險告知牌
- 鍋爐專業(yè)術語解釋及英文翻譯對照
- 綜采工作面末采安全技術措施
- 《小石潭記》作業(yè)設計
- 密封圈定位套零件的機械加工夾具設計說明書
- 旅行社等級評定申報材料完整版
- 大粒種子精播機的設計【玉米、大豆快速精密雙行播種機含9張CAD圖紙】
評論
0/150
提交評論