版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
吳忠高級(jí)中學(xué)2025屆高三沖刺模擬數(shù)學(xué)試卷注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫(xiě)在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿(mǎn)、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫(xiě)清楚,線(xiàn)條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若,則“”的一個(gè)充分不必要條件是A. B.C.且 D.或2.已知不重合的平面和直線(xiàn),則“”的充分不必要條件是()A.內(nèi)有無(wú)數(shù)條直線(xiàn)與平行 B.且C.且 D.內(nèi)的任何直線(xiàn)都與平行3.在平面直角坐標(biāo)系中,將點(diǎn)繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)到點(diǎn),設(shè)直線(xiàn)與軸正半軸所成的最小正角為,則等于()A. B. C. D.4.設(shè)集合(為實(shí)數(shù)集),,,則()A. B. C. D.5.雙曲線(xiàn)x26-y23=1的漸近線(xiàn)與圓(x-3)2+y2=A.3 B.2C.3 D.66.已知滿(mǎn)足,,,則在上的投影為()A. B. C. D.27.已知平面向量,滿(mǎn)足,,且,則()A.3 B. C. D.58.若,,則的值為()A. B. C. D.9.已知某幾何體的三視圖如圖所示,則該幾何體外接球的表面積為()A. B. C. D.10.設(shè)是虛數(shù)單位,則()A. B. C. D.11.已知函數(shù),為的零點(diǎn),為圖象的對(duì)稱(chēng)軸,且在區(qū)間上單調(diào),則的最大值是()A. B. C. D.12.已知是虛數(shù)單位,則復(fù)數(shù)()A. B. C.2 D.二、填空題:本題共4小題,每小題5分,共20分。13.命題“對(duì)任意,”的否定是.14.設(shè)向量,,且,則_________.15.已知邊長(zhǎng)為的菱形中,,現(xiàn)沿對(duì)角線(xiàn)折起,使得二面角為,此時(shí)點(diǎn),,,在同一個(gè)球面上,則該球的表面積為_(kāi)_______.16.已知三棱錐的四個(gè)頂點(diǎn)在球的球面上,,是邊長(zhǎng)為2的正三角形,,則球的體積為_(kāi)_________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在中,內(nèi)角所對(duì)的邊分別為,已知,且.(I)求角的大??;(Ⅱ)若,求面積的取值范圍.18.(12分)選修4-5:不等式選講設(shè)函數(shù).(1)當(dāng)時(shí),求不等式的解集;(2)若在上恒成立,求實(shí)數(shù)的取值范圍.19.(12分)如圖,底面ABCD是邊長(zhǎng)為2的菱形,,平面ABCD,,,BE與平面ABCD所成的角為.(1)求證:平面平面BDE;(2)求二面角B-EF-D的余弦值.20.(12分)在直角坐標(biāo)系x0y中,把曲線(xiàn)α為參數(shù))上每個(gè)點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的倍,縱坐標(biāo)不變,得到曲線(xiàn)以坐標(biāo)原點(diǎn)為極點(diǎn),以x軸正半軸為極軸,建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程(1)寫(xiě)出的普通方程和的直角坐標(biāo)方程;(2)設(shè)點(diǎn)M在上,點(diǎn)N在上,求|MN|的最小值以及此時(shí)M的直角坐標(biāo).21.(12分)在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系;曲線(xiàn)C1的普通方程為(x-1)2+y2=1,曲線(xiàn)C2的參數(shù)方程為(θ為參數(shù)).(Ⅰ)求曲線(xiàn)C1和C2的極坐標(biāo)方程:(Ⅱ)設(shè)射線(xiàn)θ=(ρ>0)分別與曲線(xiàn)C1和C2相交于A,B兩點(diǎn),求|AB|的值.22.(10分)已知曲線(xiàn):和:(為參數(shù)).以原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,且兩種坐標(biāo)系中取相同的長(zhǎng)度單位.(1)求曲線(xiàn)的直角坐標(biāo)方程和的方程化為極坐標(biāo)方程;(2)設(shè)與,軸交于,兩點(diǎn),且線(xiàn)段的中點(diǎn)為.若射線(xiàn)與,交于,兩點(diǎn),求,兩點(diǎn)間的距離.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】,∴,當(dāng)且僅當(dāng)時(shí)取等號(hào).故“且”是“”的充分不必要條件.選C.2、B【解析】
根據(jù)充分不必要條件和直線(xiàn)和平面,平面和平面的位置關(guān)系,依次判斷每個(gè)選項(xiàng)得到答案.【詳解】A.內(nèi)有無(wú)數(shù)條直線(xiàn)與平行,則相交或,排除;B.且,故,當(dāng),不能得到且,滿(mǎn)足;C.且,,則相交或,排除;D.內(nèi)的任何直線(xiàn)都與平行,故,若,則內(nèi)的任何直線(xiàn)都與平行,充要條件,排除.故選:.【點(diǎn)睛】本題考查了充分不必要條件和直線(xiàn)和平面,平面和平面的位置關(guān)系,意在考查學(xué)生的綜合應(yīng)用能力.3、A【解析】
設(shè)直線(xiàn)直線(xiàn)與軸正半軸所成的最小正角為,由任意角的三角函數(shù)的定義可以求得的值,依題有,則,利用誘導(dǎo)公式即可得到答案.【詳解】如圖,設(shè)直線(xiàn)直線(xiàn)與軸正半軸所成的最小正角為因?yàn)辄c(diǎn)在角的終邊上,所以依題有,則,所以,故選:A【點(diǎn)睛】本題考查三角函數(shù)的定義及誘導(dǎo)公式,屬于基礎(chǔ)題.4、A【解析】
根據(jù)集合交集與補(bǔ)集運(yùn)算,即可求得.【詳解】集合,,所以所以故選:A【點(diǎn)睛】本題考查了集合交集與補(bǔ)集的混合運(yùn)算,屬于基礎(chǔ)題.5、A【解析】
由圓心到漸近線(xiàn)的距離等于半徑列方程求解即可.【詳解】雙曲線(xiàn)的漸近線(xiàn)方程為y=±22x,圓心坐標(biāo)為(3,0).由題意知,圓心到漸近線(xiàn)的距離等于圓的半徑r,即r=±答案:A【點(diǎn)睛】本題考查了雙曲線(xiàn)的漸近線(xiàn)方程及直線(xiàn)與圓的位置關(guān)系,屬于基礎(chǔ)題.6、A【解析】
根據(jù)向量投影的定義,即可求解.【詳解】在上的投影為.故選:A【點(diǎn)睛】本題考查向量的投影,屬于基礎(chǔ)題.7、B【解析】
先求出,再利用求出,再求.【詳解】解:由,所以,,,故選:B【點(diǎn)睛】考查向量的數(shù)量積及向量模的運(yùn)算,是基礎(chǔ)題.8、A【解析】
取,得到,取,則,計(jì)算得到答案.【詳解】取,得到;取,則.故.故選:.【點(diǎn)睛】本題考查了二項(xiàng)式定理的應(yīng)用,取和是解題的關(guān)鍵.9、C【解析】
由三視圖可知,幾何體是一個(gè)三棱柱,三棱柱的底面是底邊為,高為的等腰三角形,側(cè)棱長(zhǎng)為,利用正弦定理求出底面三角形外接圓的半徑,根據(jù)三棱柱的兩底面中心連線(xiàn)的中點(diǎn)就是三棱柱的外接球的球心,求出球的半徑,即可求解球的表面積.【詳解】由三視圖可知,幾何體是一個(gè)三棱柱,三棱柱的底面是底邊為,高為的等腰三角形,側(cè)棱長(zhǎng)為,如圖:由底面邊長(zhǎng)可知,底面三角形的頂角為,由正弦定理可得,解得,三棱柱的兩底面中心連線(xiàn)的中點(diǎn)就是三棱柱的外接球的球心,所以,該幾何體外接球的表面積為:.故選:C【點(diǎn)睛】本題考查了多面體的內(nèi)切球與外接球問(wèn)題,由三視圖求幾何體的表面積,考查了學(xué)生的空間想象能力,屬于基礎(chǔ)題.10、A【解析】
利用復(fù)數(shù)的乘法運(yùn)算可求得結(jié)果.【詳解】由復(fù)數(shù)的乘法法則得.故選:A.【點(diǎn)睛】本題考查復(fù)數(shù)的乘法運(yùn)算,考查計(jì)算能力,屬于基礎(chǔ)題.11、B【解析】
由題意可得,且,故有①,再根據(jù),求得②,由①②可得的最大值,檢驗(yàn)的這個(gè)值滿(mǎn)足條件.【詳解】解:函數(shù),,為的零點(diǎn),為圖象的對(duì)稱(chēng)軸,,且,、,,即為奇數(shù)①.在,單調(diào),,②.由①②可得的最大值為1.當(dāng)時(shí),由為圖象的對(duì)稱(chēng)軸,可得,,故有,,滿(mǎn)足為的零點(diǎn),同時(shí)也滿(mǎn)足滿(mǎn)足在上單調(diào),故為的最大值,故選:B.【點(diǎn)睛】本題主要考查正弦函數(shù)的圖象的特征,正弦函數(shù)的周期性以及它的圖象的對(duì)稱(chēng)性,屬于中檔題.12、A【解析】
根據(jù)復(fù)數(shù)的基本運(yùn)算求解即可.【詳解】.故選:A【點(diǎn)睛】本題主要考查了復(fù)數(shù)的基本運(yùn)算,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、存在,使得【解析】試題分析:根據(jù)命題否定的概念,可知命題“對(duì)任意,”的否定是“存在,使得”.考點(diǎn):命題的否定.14、【解析】
根據(jù)向量的數(shù)量積的計(jì)算,以及向量的平方,簡(jiǎn)單計(jì)算,可得結(jié)果.【詳解】由題可知:且由所以故答案為:【點(diǎn)睛】本題考查向量的坐標(biāo)計(jì)算,主要考查計(jì)算,屬基礎(chǔ)題.15、【解析】
分別取,的中點(diǎn),,連接,由圖形的對(duì)稱(chēng)性可知球心必在的延長(zhǎng)線(xiàn)上,設(shè)球心為,半徑為,,由勾股定理可得、,再根據(jù)球的面積公式計(jì)算可得;【詳解】如圖,分別取,的中點(diǎn),,連接,則易得,,,,由圖形的對(duì)稱(chēng)性可知球心必在的延長(zhǎng)線(xiàn)上,設(shè)球心為,半徑為,,可得,解得,.故該球的表面積為.故答案為:【點(diǎn)睛】本題考查多面體的外接球的計(jì)算,屬于中檔題.16、【解析】
由題意可得三棱錐的三條側(cè)棱兩兩垂直,則它的外接球就是棱長(zhǎng)為的正方體的外接球,求出正方體的對(duì)角線(xiàn)的長(zhǎng),就是球的直徑,然后求出球的體積.【詳解】解:因?yàn)?,為正三角形,所以,因?yàn)椋匀忮F的三條側(cè)棱兩兩垂直,所以它的外接球就是棱長(zhǎng)為的正方體的外接球,因?yàn)檎襟w的對(duì)角線(xiàn)長(zhǎng)為,所以其外接球的半徑為,所以球的體積為故答案為:【點(diǎn)睛】此題考查球的體積,幾何體的外接球,考查空間想象能力,計(jì)算能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(Ⅰ);(Ⅱ)【解析】
(I)根據(jù),利用二倍角公式得到,再由輔助角公式得到,然后根據(jù)正弦函數(shù)的性質(zhì)求解.(Ⅱ)根據(jù)(I)由余弦定理得到,再利用重要不等式得到,然后由求解.【詳解】(I)因?yàn)?,所以,,,或,或,因?yàn)?,所以所以;(Ⅱ)由余弦定理得:,所以,所以,?dāng)且僅當(dāng)取等號(hào),又因?yàn)?,所以,所以【點(diǎn)睛】本題主要考查二倍角公式,輔助角公式以及余弦定理,還考查了運(yùn)算求解的能力,屬于中檔題.18、(1);(2)【解析】
(1)當(dāng)時(shí),將原不等式化簡(jiǎn)后兩邊平方,由此解出不等式的解集.(2)對(duì)分成三種情況,利用零點(diǎn)分段法去絕對(duì)值,將表示為分段函數(shù)的形式,根據(jù)單調(diào)性求得的取值范圍.【詳解】(1)時(shí),可得,即,化簡(jiǎn)得:,所以不等式的解集為.(2)①當(dāng)時(shí),由函數(shù)單調(diào)性可得,解得;②當(dāng)時(shí),,所以符合題意;③當(dāng)時(shí),由函數(shù)單調(diào)性可得,,解得綜上,實(shí)數(shù)的取值范圍為【點(diǎn)睛】本小題主要考查含有絕對(duì)值不等式的解法,考查不等式恒成立問(wèn)題的求解,屬于中檔題.19、(1)證明見(jiàn)解析;(2)【解析】
(1)要證明平面平面BDE,只需在平面內(nèi)找一條直線(xiàn)垂直平面BDE即可;(2)以O(shè)為坐標(biāo)原點(diǎn),OA,OB,OG所在直線(xiàn)分別為x、y、z軸建立如圖空間直角坐標(biāo)系,分別求出平面BEF的法向量,平面的法向量,算出即可.【詳解】(1)∵平面ABCD,平面ABCD.∴.又∵底面ABCD是菱形,∴.∵,∴平面BDE,設(shè)AC,BD交于O,取BE的中點(diǎn)G,連FG,OG,,,四邊形OCFG是平行四邊形,平面BDE∴平面BDE,又因平面BEF,∴平面平面BDE.(2)以O(shè)為坐標(biāo)原點(diǎn),OA,OB,OG所在直線(xiàn)分別為x、y、z軸建立如圖空間直角坐標(biāo)系∵BE與平面ABCD所成的角為,,,,,,.,設(shè)平面BEF的法向量為,,,設(shè)平面的法向量設(shè)二面角的大小為..【點(diǎn)睛】本題考查線(xiàn)面垂直證面面垂直、面面所成角的計(jì)算,考查學(xué)生的計(jì)算能力,解決此類(lèi)問(wèn)題最關(guān)鍵是準(zhǔn)確寫(xiě)出點(diǎn)的坐標(biāo),是一道中檔題.20、(1)的普通方程為,的直角坐標(biāo)方程為.(2)最小值為,此時(shí)【解析】
(1)由的參數(shù)方程消去求得的普通方程,利用極坐標(biāo)和直角坐標(biāo)轉(zhuǎn)化公式,求得的直角坐標(biāo)方程.(2)設(shè)出點(diǎn)的坐標(biāo),利用點(diǎn)到直線(xiàn)的距離公式求得最小值的表達(dá)式,結(jié)合三角函數(shù)的指數(shù)求得的最小值以及此時(shí)點(diǎn)的坐標(biāo).【詳解】(1)由題意知的參數(shù)方程為(為參數(shù))所以的普通方程為.由得,所以的直角坐標(biāo)方程為.(2)由題意,可設(shè)點(diǎn)的直角坐標(biāo)為,因?yàn)槭侵本€(xiàn),所以的最小值即為到的距離,因?yàn)椋?dāng)且僅當(dāng)時(shí),取得最小值為,此時(shí)的直角坐標(biāo)為即.【點(diǎn)睛】本小題主要考查參數(shù)方程化為普通方程,考查極坐標(biāo)方程化為直角坐標(biāo)方程,考查利用曲線(xiàn)參數(shù)方程求解點(diǎn)到直線(xiàn)距離的最小值問(wèn)題,屬于中檔題.21、(Ⅰ),;(Ⅱ)【解析】
(Ⅰ)根據(jù),可得曲線(xiàn)C1的極坐標(biāo)方程,然后先計(jì)算曲線(xiàn)C2的普通方程,最后根據(jù)極坐標(biāo)與直角坐標(biāo)的轉(zhuǎn)化公式,可得結(jié)果.(Ⅱ)將射線(xiàn)θ=分別與曲線(xiàn)C1和C2極坐標(biāo)方程聯(lián)立,可得A,B的極坐標(biāo),然后簡(jiǎn)單計(jì)算,可得結(jié)果.【詳解】(Ⅰ)由所以曲線(xiàn)的極坐標(biāo)方程為,曲線(xiàn)的普通方程為則曲線(xiàn)的極坐標(biāo)方程為(Ⅱ)令,則,,則,即,所以,,故.【點(diǎn)睛】本題考查極坐標(biāo)方程和參數(shù)方程與直角坐標(biāo)方程的轉(zhuǎn)化,以及極坐標(biāo)方程中的幾何意義,屬基礎(chǔ)題.22、(1),;(2)1.【解析】
(1)利用正弦的和角公式,結(jié)合極坐標(biāo)化為直角坐標(biāo)的公式,即可求得曲線(xiàn)的直
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 商業(yè)安全教育從理論到實(shí)踐的轉(zhuǎn)化
- 商業(yè)道德教育家庭與學(xué)校的聯(lián)合培養(yǎng)策略
- 2025中國(guó)石化石油機(jī)械股份限公司畢業(yè)生招聘10人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025中南林業(yè)科技大學(xué)事業(yè)單位招聘擬聘用人員歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025下半年甘肅10.27事業(yè)單位聯(lián)考招聘(749人)高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025下半年安徽省馬鞍山市雨山區(qū)事業(yè)單位招聘5人歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025下半年四川廣元市昭化區(qū)部分事業(yè)單位招聘11人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025上海地鐵第一運(yùn)營(yíng)限公司車(chē)站值班員(儲(chǔ)備)招聘50人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025上半年貴州事業(yè)單位聯(lián)考高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025上半年四川自貢市市屬事業(yè)單位考試聘用人員擬聘用人員(第二批)高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2024年城市更新項(xiàng)目回遷安置合同
- 2024-2030年中國(guó)水果行業(yè)盈利態(tài)勢(shì)及營(yíng)銷(xiāo)動(dòng)態(tài)分析研究報(bào)告
- 初一《皇帝的新裝》課本劇劇本
- 汽車(chē)發(fā)動(dòng)機(jī)構(gòu)造與維修任務(wù)工單
- 食品安全自查、從業(yè)人員健康管理、進(jìn)貨查驗(yàn)記錄、食品安全事故處置等保證食品安全規(guī)章制度
- 液化氣充裝站安全培訓(xùn)
- 鉆井隊(duì)安全管理年終工作總結(jié)
- 腰椎感染護(hù)理查房
- 2024秋期國(guó)家開(kāi)放大學(xué)專(zhuān)科《法律咨詢(xún)與調(diào)解》一平臺(tái)在線(xiàn)形考(形考任務(wù)1至4)試題及答案
- 銷(xiāo)售業(yè)務(wù)拓展外包協(xié)議模板2024版版
- 體育大單元教學(xué)計(jì)劃(18課時(shí))
評(píng)論
0/150
提交評(píng)論