新高考數(shù)學(xué)一輪復(fù)習(xí)講練測第2章第02講 函數(shù)的性質(zhì):單調(diào)性、奇偶性、周期性、對稱性(練習(xí))(解析版)_第1頁
新高考數(shù)學(xué)一輪復(fù)習(xí)講練測第2章第02講 函數(shù)的性質(zhì):單調(diào)性、奇偶性、周期性、對稱性(練習(xí))(解析版)_第2頁
新高考數(shù)學(xué)一輪復(fù)習(xí)講練測第2章第02講 函數(shù)的性質(zhì):單調(diào)性、奇偶性、周期性、對稱性(練習(xí))(解析版)_第3頁
新高考數(shù)學(xué)一輪復(fù)習(xí)講練測第2章第02講 函數(shù)的性質(zhì):單調(diào)性、奇偶性、周期性、對稱性(練習(xí))(解析版)_第4頁
新高考數(shù)學(xué)一輪復(fù)習(xí)講練測第2章第02講 函數(shù)的性質(zhì):單調(diào)性、奇偶性、周期性、對稱性(練習(xí))(解析版)_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

第02講函數(shù)的性質(zhì):單調(diào)性、奇偶性、周期性、對稱性(模擬精練+真題演練)1.(2023·江西鷹潭·貴溪市實(shí)驗(yàn)中學(xué)??寄M預(yù)測)已知偶函數(shù)SKIPIF1<0的圖象關(guān)于點(diǎn)SKIPIF1<0中心對稱,當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】偶函數(shù)SKIPIF1<0的圖象關(guān)于點(diǎn)SKIPIF1<0中心對稱,則SKIPIF1<0,且SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0,故函數(shù)為周期為SKIPIF1<0的函數(shù),SKIPIF1<0.故選:C2.(2023·廣東廣州·統(tǒng)考模擬預(yù)測)已知函數(shù)SKIPIF1<0,若SKIPIF1<0,則實(shí)數(shù)SKIPIF1<0的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0,同理,當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0,且SKIPIF1<0,可知函數(shù)SKIPIF1<0為奇函數(shù);當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0單調(diào)遞增,即SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0單調(diào)遞增,且SKIPIF1<0為奇函數(shù),所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增.則SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,可得SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,所以解集為SKIPIF1<0.故選:A3.(2023·河南·模擬預(yù)測)已知SKIPIF1<0是定義在R上的奇函數(shù),且滿足SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0(

)A.0 B.SKIPIF1<0 C.1 D.SKIPIF1<0【答案】A【解析】因?yàn)镾KIPIF1<0是定義在R上的奇函數(shù),且滿足SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0是以SKIPIF1<0為周期的周期函數(shù),又SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0.故選:A4.(2023·河南·校聯(lián)考模擬預(yù)測)已知SKIPIF1<0是定義在SKIPIF1<0上的函數(shù),且SKIPIF1<0為奇函數(shù),SKIPIF1<0為偶函數(shù),當(dāng)SKIPIF1<0時,SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則a,b,c的大小關(guān)系為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】由SKIPIF1<0為奇函數(shù),得SKIPIF1<0,即SKIPIF1<0,又由SKIPIF1<0為偶函數(shù),得SKIPIF1<0,即SKIPIF1<0,于是SKIPIF1<0,即SKIPIF1<0,因此SKIPIF1<0的周期為8,又當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,由SKIPIF1<0,得SKIPIF1<0的圖象關(guān)于點(diǎn)SKIPIF1<0成中心對稱,則函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,因此函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,由SKIPIF1<0,得SKIPIF1<0的圖象關(guān)于直線SKIPIF1<0對稱,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,顯然SKIPIF1<0,即有SKIPIF1<0,即SKIPIF1<0,所以a,b,c的大小關(guān)系為SKIPIF1<0.故選:D5.(2023·遼寧丹東·統(tǒng)考二模)設(shè)函數(shù)SKIPIF1<0由關(guān)系式SKIPIF1<0確定,函數(shù)SKIPIF1<0,則(

)A.SKIPIF1<0為增函數(shù) B.SKIPIF1<0為奇函數(shù)C.SKIPIF1<0值域?yàn)镾KIPIF1<0 D.函數(shù)SKIPIF1<0沒有正零點(diǎn)【答案】D【解析】由題意,在函數(shù)SKIPIF1<0中,SKIPIF1<0,可知SKIPIF1<0畫以下曲線:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.這些曲線合并組成SKIPIF1<0圖象,是兩段以SKIPIF1<0為漸近線的雙曲線和一段圓弧構(gòu)成.因?yàn)镾KIPIF1<0作SKIPIF1<0圖象在軸右側(cè)部分包括點(diǎn)SKIPIF1<0關(guān)于x軸對稱,得到曲線SKIPIF1<0,再作SKIPIF1<0關(guān)于坐標(biāo)原點(diǎn)對稱,去掉點(diǎn)SKIPIF1<0得到曲線SKIPIF1<0,SKIPIF1<0與SKIPIF1<0合并組成SKIPIF1<0圖象.由SKIPIF1<0圖象可知,SKIPIF1<0不是奇函數(shù),SKIPIF1<0不是增函數(shù),SKIPIF1<0值域?yàn)镽.當(dāng)SKIPIF1<0時,SKIPIF1<0圖象與SKIPIF1<0圖象沒有公共點(diǎn),從而函數(shù)SKIPIF1<0沒有正零點(diǎn).故選:D.6.(2023·江西撫州·統(tǒng)考模擬預(yù)測)已知函數(shù)SKIPIF1<0都是定義在SKIPIF1<0上的函數(shù),SKIPIF1<0是奇函數(shù),SKIPIF1<0是偶函數(shù),且SKIPIF1<0,則SKIPIF1<0(

)A.-4052 B.-4050 C.-1012 D.-1010【答案】A【解析】因?yàn)镾KIPIF1<0是偶函數(shù),所以SKIPIF1<0,由SKIPIF1<0知,SKIPIF1<0,所以SKIPIF1<0,則f(x)為偶函數(shù).由SKIPIF1<0是奇函數(shù)可知,SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,則4為f(x)的一個周期.由SKIPIF1<0得,SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,由SKIPIF1<0得,SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,又SKIPIF1<01,所以SKIPIF1<0;在SKIPIF1<0中,令SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0.SKIPIF1<0SKIPIF1<0.故選:A.7.(2023·山西·校聯(lián)考模擬預(yù)測)已知函數(shù)SKIPIF1<0,SKIPIF1<0都是定義在R上的函數(shù),SKIPIF1<0是奇函數(shù),SKIPIF1<0是偶函數(shù),且SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】因?yàn)镾KIPIF1<0是偶函數(shù),所以SKIPIF1<0.由SKIPIF1<0知,SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0為偶函數(shù).由SKIPIF1<0是奇函數(shù)可知,SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,則4為SKIPIF1<0的一個周期.由SKIPIF1<0得,SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,由SKIPIF1<0得,SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0.由SKIPIF1<0,得SKIPIF1<0,又SKIPIF1<01,所以SKIPIF1<0;在SKIPIF1<0中,令SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0.SKIPIF1<0.故選:A.8.(2023·江西九江·統(tǒng)考三模)已知定義在R上的函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0是奇函數(shù),SKIPIF1<0的圖像關(guān)于直線SKIPIF1<0對稱,則SKIPIF1<0(

)A.在SKIPIF1<0上單調(diào)遞減 B.在SKIPIF1<0上單調(diào)遞增C.在SKIPIF1<0上單調(diào)遞減 D.在SKIPIF1<0上單調(diào)遞增【答案】C【解析】SKIPIF1<0SKIPIF1<0是奇函數(shù),SKIPIF1<0SKIPIF1<0,即SKIPIF1<0的圖象關(guān)于點(diǎn)SKIPIF1<0對稱,又SKIPIF1<0SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,即SKIPIF1<0在SKIPIF1<0上單調(diào)遞增.由SKIPIF1<0,可得SKIPIF1<0,由SKIPIF1<0圖像關(guān)于直線SKIPIF1<0對稱可知SKIPIF1<0為偶函數(shù),∴SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0是周期函數(shù),最小正周期為4,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0在SKIPIF1<0上的單調(diào)性和在SKIPIF1<0上的單調(diào)性相同,SKIPIF1<0SKIPIF1<0在SKIPIF1<0上單調(diào)遞減.故選:C.9.(多選題)(2023·湖北武漢·統(tǒng)考模擬預(yù)測)已知非常數(shù)函數(shù)SKIPIF1<0及其導(dǎo)函數(shù)SKIPIF1<0的定義域均為R,若SKIPIF1<0為奇函數(shù),SKIPIF1<0為偶函數(shù),則(

).A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】BCD【解析】因?yàn)榉浅?shù)函數(shù)SKIPIF1<0及其導(dǎo)函數(shù)SKIPIF1<0的定義域均為R,若SKIPIF1<0為奇函數(shù),則SKIPIF1<0,則函數(shù)SKIPIF1<0關(guān)于點(diǎn)SKIPIF1<0成中心對稱,且SKIPIF1<0,故選項(xiàng)A錯誤;因?yàn)镾KIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,故選項(xiàng)B正確;因?yàn)镾KIPIF1<0,即SKIPIF1<0兩邊同時求導(dǎo),則有SKIPIF1<0,所以函數(shù)SKIPIF1<0關(guān)于直線SKIPIF1<0對稱,因?yàn)楹瘮?shù)SKIPIF1<0為偶函數(shù),所以SKIPIF1<0,即SKIPIF1<0,兩邊同時求導(dǎo),則有SKIPIF1<0,所以SKIPIF1<0關(guān)于SKIPIF1<0成中心對稱,則導(dǎo)函數(shù)SKIPIF1<0的周期為SKIPIF1<0,所以SKIPIF1<0,故選項(xiàng)C正確;因?yàn)楹瘮?shù)SKIPIF1<0關(guān)于直線SKIPIF1<0對稱,且SKIPIF1<0,所以SKIPIF1<0,故選項(xiàng)D正確,故選:BCD.10.(多選題)(2023·遼寧撫順·校聯(lián)考二模)已知函數(shù)SKIPIF1<0,且滿足SKIPIF1<0,則實(shí)數(shù)SKIPIF1<0的取值可能為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.1 D.2【答案】AD【解析】令SKIPIF1<0,則SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0為奇函數(shù).又因?yàn)镾KIPIF1<0,所以根據(jù)單調(diào)性的性質(zhì)可得SKIPIF1<0為增函數(shù).因?yàn)镾KIPIF1<0,所以SKIPIF1<0,等價于SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,所以實(shí)數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.故選:AD11.(多選題)(2023·湖南衡陽·校聯(lián)考模擬預(yù)測)已知函數(shù)SKIPIF1<0,則(

)A.SKIPIF1<0在SKIPIF1<0上最大值為2B.SKIPIF1<0有兩個零點(diǎn)C.SKIPIF1<0的圖像關(guān)于點(diǎn)SKIPIF1<0對稱D.存在實(shí)數(shù)SKIPIF1<0,使SKIPIF1<0的圖像關(guān)于原點(diǎn)對稱【答案】AC【解析】對于SKIPIF1<0,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0,故SKIPIF1<0正確;對于SKIPIF1<0的零點(diǎn)個數(shù)即方程SKIPIF1<0的實(shí)根個數(shù),即方程SKIPIF1<0的實(shí)根個數(shù),即SKIPIF1<0與SKIPIF1<0圖像的交點(diǎn)個數(shù).在同一坐標(biāo)系中畫出SKIPIF1<0與SKIPIF1<0圖像如圖所示:兩個函數(shù)圖像只有一個交點(diǎn),故B錯誤;對于SKIPIF1<0,若SKIPIF1<0的圖像關(guān)于點(diǎn)SKIPIF1<0對稱,則有SKIPIF1<0對任意SKIPIF1<0恒成立.SKIPIF1<0SKIPIF1<0恒成立,SKIPIF1<0的圖像關(guān)于點(diǎn)SKIPIF1<0對稱,故SKIPIF1<0正確;對于SKIPIF1<0,若存在實(shí)數(shù)SKIPIF1<0使SKIPIF1<0的圖像關(guān)于原點(diǎn)對稱,則SKIPIF1<0為奇函數(shù).令SKIPIF1<0對任意SKIPIF1<0恒成立,即SKIPIF1<0恒成立,即SKIPIF1<0對任意SKIPIF1<0恒成立,則SKIPIF1<0,上述方程組無解,故SKIPIF1<0錯誤.故選:AC.12.(多選題)(2023·浙江金華·統(tǒng)考模擬預(yù)測)已知函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,且SKIPIF1<0的圖象關(guān)于直線SKIPIF1<0對稱,SKIPIF1<0,又SKIPIF1<0,則(

)A.SKIPIF1<0為偶函數(shù) B.SKIPIF1<0的圖象關(guān)于點(diǎn)SKIPIF1<0中心對稱C.SKIPIF1<0是奇函數(shù) D.SKIPIF1<0【答案】AD【解析】由SKIPIF1<0的圖象關(guān)于直線SKIPIF1<0對稱,可得SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0為偶函數(shù),A正確;又因?yàn)镾KIPIF1<0,令SKIPIF1<0等價于SKIPIF1<0,則SKIPIF1<0①,令SKIPIF1<0等價于SKIPIF1<0,SKIPIF1<0②,②減①可得:SKIPIF1<0,故SKIPIF1<0的周期為4,又SKIPIF1<0,所以SKIPIF1<0③,令SKIPIF1<0等價于SKIPIF1<0,則SKIPIF1<0④,因?yàn)镾KIPIF1<0為偶函數(shù),③減④可得:SKIPIF1<0,故SKIPIF1<0是偶函數(shù),故C不正確;令SKIPIF1<0中SKIPIF1<0,可得SKIPIF1<0,解得:SKIPIF1<0,故B不正確;令SKIPIF1<0中SKIPIF1<0,可得SKIPIF1<0,因?yàn)镾KIPIF1<0,則SKIPIF1<0,令SKIPIF1<0中SKIPIF1<0,可得SKIPIF1<0,因?yàn)镾KIPIF1<0,則SKIPIF1<0,由SKIPIF1<0,因?yàn)镾KIPIF1<0的周期為4,且SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,故D正確.故選:AD.13.(2023·河北·統(tǒng)考模擬預(yù)測)已知函數(shù)SKIPIF1<0,若SKIPIF1<0,則實(shí)數(shù)SKIPIF1<0的取值范圍為_________.【答案】SKIPIF1<0【解析】令SKIPIF1<0,因?yàn)镾KIPIF1<0,所以函數(shù)SKIPIF1<0為奇函數(shù),由函數(shù)SKIPIF1<0都是增函數(shù),可得SKIPIF1<0為增函數(shù),SKIPIF1<0,則不等式SKIPIF1<0,即為SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,所以實(shí)數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.故答案為:SKIPIF1<0.14.(2023·四川成都·石室中學(xué)??寄M預(yù)測)已知定義在SKIPIF1<0上的函數(shù)SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0為奇函數(shù),則SKIPIF1<0_________.【答案】SKIPIF1<0【解析】SKIPIF1<0為定義域?yàn)镾KIPIF1<0的奇函數(shù),SKIPIF1<0,解得:SKIPIF1<0;由SKIPIF1<0得:SKIPIF1<0,SKIPIF1<0是周期為SKIPIF1<0的周期函數(shù),SKIPIF1<0.故答案為:SKIPIF1<0.15.(2023·河南·校聯(lián)考模擬預(yù)測)定義在SKIPIF1<0上的函數(shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0______.【答案】1012【解析】由SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0是以4為周期的周期函數(shù).令SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故答案為:1012.16.(2023·山西朔州·懷仁市第一中學(xué)校??寄M預(yù)測)已知函數(shù)SKIPIF1<0,若SKIPIF1<0,則實(shí)數(shù)SKIPIF1<0的取值范圍為__________.【答案】SKIPIF1<0【解析】因?yàn)镾KIPIF1<0,定義域?yàn)镾KIPIF1<0,由SKIPIF1<0,可知函數(shù)SKIPIF1<0為偶函數(shù),函數(shù)圖象關(guān)于SKIPIF1<0軸對稱,又由SKIPIF1<0,令SKIPIF1<0,由SKIPIF1<0可知函數(shù)SKIPIF1<0為奇函數(shù),又由SKIPIF1<0,SKIPIF1<0(當(dāng)且僅當(dāng)SKIPIF1<0時取等號),可得函數(shù)SKIPIF1<0單調(diào)遞增,且當(dāng)SKIPIF1<0時SKIPIF1<0,由一次函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0單調(diào)遞增且函數(shù)值恒為正,可知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0單調(diào)遞增,又由函數(shù)SKIPIF1<0為偶函數(shù),可得函數(shù)SKIPIF1<0的增區(qū)間為SKIPIF1<0,減區(qū)間為SKIPIF1<0,不等式SKIPIF1<0可化為SKIPIF1<0,必有SKIPIF1<0,平方后整理為SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,即實(shí)數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.故答案為:SKIPIF1<017.(2023·全國·高三專題練習(xí))已知SKIPIF1<0的周期為4,且等式SKIPIF1<0對任意SKIPIF1<0均成立,判斷函數(shù)SKIPIF1<0的奇偶性.【解析】由SKIPIF1<0,將SKIPIF1<0代入,得SKIPIF1<0,由SKIPIF1<0的周期為4,得SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0為偶函數(shù).18.(2023·全國·高三專題練習(xí))利用定義證明函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上為減函數(shù).【解析】任取SKIPIF1<0且SKIPIF1<0,則SKIPIF1<0,因?yàn)镾KIPIF1<0且SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,所以函數(shù)SKIPIF1<0是SKIPIF1<0上的減函數(shù).19.(2023·全國·高三專題練習(xí))判斷下列函數(shù)的奇偶性.(1)SKIPIF1<0,(2)SKIPIF1<0【解析】(1)先看函數(shù)的定義域,要滿足SKIPIF1<0所以x的取值范圍為:SKIPIF1<0.可以發(fā)現(xiàn),定義域是關(guān)于原點(diǎn)對稱的,接著用定義判斷奇偶性,因?yàn)镾KIPIF1<0,所以原函數(shù)為偶函數(shù).(2)對于函數(shù)SKIPIF1<0,先看函數(shù)定義域,因?yàn)镾KIPIF1<0,所以SKIPIF1<0的定義域?yàn)镾KIPIF1<0,顯然關(guān)于原點(diǎn)對稱,設(shè)函數(shù)SKIPIF1<0,則有SKIPIF1<0,所以SKIPIF1<0,所以原函數(shù)為偶函數(shù).20.(2023·陜西咸陽·??寄M預(yù)測)求下列情況下SKIPIF1<0的值(1)若函數(shù)SKIPIF1<0是偶函數(shù),求SKIPIF1<0的值.(2)已知SKIPIF1<0是奇函數(shù),且當(dāng)SKIPIF1<0時,SKIPIF1<0,若SKIPIF1<0,求SKIPIF1<0的值.【解析】(1)因?yàn)镾KIPIF1<0,故SKIPIF1<0,因?yàn)镾KIPIF1<0為偶函數(shù),故SKIPIF1<0,所以SKIPIF1<0,整理得到SKIPIF1<0,故SKIPIF1<0;(2)因?yàn)镾KIPIF1<0是奇函數(shù),且當(dāng)SKIPIF1<0時,SKIPIF1<0SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,化簡可得SKIPIF1<0,解得:SKIPIF1<0.21.(2023·全國·高三專題練習(xí))設(shè)SKIPIF1<0是定義在R上的偶函數(shù),其圖象關(guān)于直線SKIPIF1<0對稱,對任意SKIPIF1<0,SKIPIF1<0,都有SKIPIF1<0,且SKIPIF1<0.(1)求fSKIPIF1<0;(2)證明SKIPIF1<0是周期函數(shù);(3)記SKIPIF1<0SKIPIF1<0,求SKIPIF1<0.【解析】(1)因?yàn)閷θ我獾腟KIPIF1<0,都有SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0.(2)設(shè)SKIPIF1<0關(guān)于直線SKIPIF1<0對稱,故SKIPIF1<0,即SKIPIF1<0,又SKIPIF1<0是偶函數(shù),所以SKIPIF1<0,∴SKIPIF1<0,將上式中SKIPIF1<0以SKIPIF1<0代換,得SKIPIF1<0,則SKIPIF1<0是R上的周期函數(shù),且2是它的一個周期.(3)由(1)知SKIPIF1<0,∵SKIPIF1<0SKIPIF1<0,又SKIPIF1<0,∴SKIPIF1<0.∵SKIPIF1<0的一個周期是2,∴SKIPIF1<0,因此SKIPIF1<0.22.(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的周期函數(shù),周期SKIPIF1<0,函數(shù)SKIPIF1<0(SKIPIF1<0)是奇函數(shù).又已知SKIPIF1<0在SKIPIF1<0上是一次函數(shù),在SKIPIF1<0上是二次函數(shù),且在SKIPIF1<0時函數(shù)取得最小值SKIPIF1<0.(1)證明:SKIPIF1<0;(2)求SKIPIF1<0的解析式;(3)求SKIPIF1<0在[4,9]上的解析式.【解析】(1)證明:∵f(x)是以SKIPIF1<0為周期的周期函數(shù),∴SKIPIF1<0,又∵SKIPIF1<0是奇函數(shù),∴SKIPIF1<0,∴SKIPIF1<0(2)當(dāng)SKIPIF1<0時,由題意可設(shè)SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.(3)根據(jù)(2)中所求,可知SKIPIF1<0;又SKIPIF1<0在SKIPIF1<0上是奇函數(shù),故SKIPIF1<0,故當(dāng)SKIPIF1<0時,設(shè)SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0.故當(dāng)SKIPIF1<0時,SKIPIF1<0.又SKIPIF1<0在SKIPIF1<0上是奇函數(shù),故當(dāng)SKIPIF1<0時,SKIPIF1<0.綜上,則SKIPIF1<0時,SKIPIF1<0.因?yàn)镾KIPIF1<0時,SKIPIF1<0.所以當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0,綜上所述,SKIPIF1<0.1.(2021·全國·高考真題)下列函數(shù)中是增函數(shù)的為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】對于A,SKIPIF1<0為SKIPIF1<0上的減函數(shù),不合題意,舍.對于B,SKIPIF1<0為SKIPIF1<0上的減函數(shù),不合題意,舍.對于C,SKIPIF1<0在SKIPIF1<0為減函數(shù),不合題意,舍.對于D,SKIPIF1<0為SKIPIF1<0上的增函數(shù),符合題意,故選:D.2.(2021·全國·高考真題)設(shè)SKIPIF1<0是定義域?yàn)镽的奇函數(shù),且SKIPIF1<0.若SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】由題意可得:SKIPIF1<0,而SKIPIF1<0,故SKIPIF1<0.故選:C.3.(2021·全國·統(tǒng)考高考真題)設(shè)函數(shù)SKIPIF1<0的定義域?yàn)镽,SKIPIF1<0為奇函數(shù),SKIPIF1<0為偶函數(shù),當(dāng)SKIPIF1<0時,SKIPIF1<0.若SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】[方法一]:因?yàn)镾KIPIF1<0是奇函數(shù),所以SKIPIF1<0①;因?yàn)镾KIPIF1<0是偶函數(shù),所以SKIPIF1<0②.令SKIPIF1<0,由①得:SKIPIF1<0,由②得:SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,由①得:SKIPIF1<0,所以SKIPIF1<0.思路一:從定義入手.SKIPIF1<0SKIPIF1<0SKIPIF1<0所以SKIPIF1<0.[方法二]:因?yàn)镾KIPIF1<0是奇函數(shù),所以SKIPIF1<0①;因?yàn)镾KIPIF1<0是偶函數(shù),所以SKIPIF1<0②.令SKIPIF1<0,由①得:SKIPIF1<0,由②得:SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,由①得:SKIPIF1<0,所以SKIPIF1<0.思路二:從周期性入手由兩個對稱性可知,函數(shù)SKIPIF1<0的周期SKIPIF1<0.所以SKIPIF1<0.故選:D.4.(2021·全國·統(tǒng)考高考真題)設(shè)函數(shù)SKIPIF1<0,則下列函數(shù)中為奇函數(shù)的是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】由題意可得SKIPIF1<0,對于A,SKIPIF1<0不是奇函數(shù);對于B,SKIPIF1<0是奇函數(shù);對于C,SKIPIF1<0,定義域不關(guān)于原點(diǎn)對稱,不是奇函數(shù);對于D,SKIPIF1<0,定義域不關(guān)于原點(diǎn)對稱,不是奇函數(shù).故選:B5.(2020·山東·統(tǒng)考高考真題)已知函數(shù)SKIPIF1<0的定義域是SKIPIF1<0,若對于任意兩個不相等的實(shí)數(shù)SKIPIF1<0,SKIPIF1<0,總有SKIPIF1<0成立,則函數(shù)SKIPIF1<0一定是(

)A.奇函數(shù) B.偶函數(shù) C.增函數(shù) D.減函數(shù)【答案】C【解析】對于任意兩個不相等的實(shí)數(shù)SKIPIF1<0,SKIPIF1<0,總有SKIPIF1<0成立,等價于對于任意兩個不相等的實(shí)數(shù)SKIPIF1<0,總有SKIPIF1<0.所以函數(shù)SKIPIF1<0一定是增函數(shù).故選:C6.(2020·海南·高考真題)若定義在SKIPIF1<0的奇函數(shù)f(x)在SKIPIF1<0單調(diào)遞減,且f(2)=0,則滿足SKIPIF1<0的x的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】因?yàn)槎x在SKIPIF1<0上的奇函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,且SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上也是單調(diào)遞減,且SKIPIF1<0,SKIPIF1<0,所以當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,所以由SKIPIF1<0可得:SKIPIF1<0或SKIPIF1<0或SKIPIF1<0解得SKIPIF1<0或SKIPIF1<0,所以滿足SKIPIF1<0的SKIPIF1<0的取值范圍是SKIPIF1<0,故選:D.7.(2020·全國·統(tǒng)考高考真題)設(shè)函數(shù)SKIPIF1<0,則SKIPIF1<0(

)A.是奇函數(shù),且在(0,+∞)單調(diào)遞增 B.是奇函數(shù),且在(0,+∞)單調(diào)遞減C.是偶函數(shù),且在(0,+∞)單調(diào)遞增 D.是偶函數(shù),且在(0,+∞)單調(diào)遞減【答案】A【解析】因?yàn)楹瘮?shù)SKIPIF1<0定義域?yàn)镾KIPIF1<0,其關(guān)于原點(diǎn)對稱,而SKIPIF1<0,所以函數(shù)SKIPIF1<0為奇函數(shù).又因?yàn)楹瘮?shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞增,而SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞減,所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞增.故選:A.8.(2020·全國·統(tǒng)考高考真題)設(shè)函數(shù)SKIPIF1<0,則f(x)(

)A.是偶函數(shù),且在SKIPIF1<0單調(diào)遞增 B.是奇函數(shù),且在SKIPIF1<0單調(diào)遞減C.是偶函數(shù),且在SKIPIF1<0單調(diào)遞增 D.是奇函數(shù),且在SKIPIF1<0單調(diào)遞減【答案】D【解析】由SKIPIF1<0得SKIPIF1<0定義域?yàn)镾KIPIF1<0,關(guān)于坐標(biāo)原點(diǎn)對稱,又SKIPIF1<0,SKIPIF1<0為定義域上的奇函數(shù),可排除AC;當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,排除B;當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0在定義域內(nèi)單調(diào)遞增,根據(jù)復(fù)合函數(shù)單調(diào)性可知:SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,D正確.故選:D.9.(多選題)(2022·全國·統(tǒng)考高考真題)已知函數(shù)SKIPIF1<0及其導(dǎo)函數(shù)SKIPIF1<0的定義域均為SKIPIF1<0,記SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0均為偶函數(shù),則(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】BC【解析】[方法一]:對稱性和周期性的關(guān)系研究對于SKIPIF1<0,因?yàn)镾KIPIF1<0為偶函數(shù),所以SKIPIF1<0即SKIPIF1<0①,所以SKIPIF1<0,所以SKIPIF1<0關(guān)于SKIPIF1<0對稱,則SKIPIF1<0,故C正確;對于SKIPIF1<0,因?yàn)镾KIPIF1<0為偶函數(shù),SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0關(guān)于SKIPIF1<0對稱,由①求導(dǎo),和SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0關(guān)于SKIPIF1<0對稱,因?yàn)槠涠x域?yàn)镽,所以SKIPIF1<0,結(jié)合SKIPIF1<0關(guān)于SKIPIF1<0對稱,從而周期SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,故B正確,D錯誤;若函數(shù)SKIPIF1<0滿足題設(shè)條件,則函數(shù)SKIPIF1<0(C為常數(shù))也滿足題設(shè)條件,所以無法確定SKIPIF1<0的函數(shù)值,故A錯誤.故選:BC.[方法二]:【最優(yōu)解】特殊值,構(gòu)造函數(shù)法.由方法一知SKIPIF1<0周期為2,關(guān)于SKIPIF1<0對稱,故可設(shè)SKIPIF1<

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論