版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
自覺遵守考場(chǎng)紀(jì)律如考試作弊此答卷無效密自覺遵守考場(chǎng)紀(jì)律如考試作弊此答卷無效密封線第1頁,共3頁湖北工程學(xué)院《CIS設(shè)計(jì)》
2022-2023學(xué)年第一學(xué)期期末試卷院(系)_______班級(jí)_______學(xué)號(hào)_______姓名_______題號(hào)一二三四總分得分批閱人一、單選題(本大題共30個(gè)小題,每小題1分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在計(jì)算機(jī)視覺的三維重建任務(wù)中,假設(shè)要從一組二維圖像恢復(fù)出物體的三維結(jié)構(gòu)。以下關(guān)于三維重建方法的描述,正確的是:()A.基于立體視覺的方法需要多視角的圖像,并且對(duì)相機(jī)的標(biāo)定精度要求不高B.結(jié)構(gòu)光方法能夠快速準(zhǔn)確地獲取物體表面的三維信息,但對(duì)環(huán)境光敏感C.從運(yùn)動(dòng)中恢復(fù)結(jié)構(gòu)(SfM)方法只適用于靜態(tài)場(chǎng)景,無法處理動(dòng)態(tài)物體D.所有的三維重建方法都能夠生成高精度的、完整的物體三維模型2、計(jì)算機(jī)視覺在自動(dòng)駕駛領(lǐng)域有重要應(yīng)用。假設(shè)要開發(fā)一個(gè)能夠識(shí)別道路標(biāo)志的系統(tǒng),以下關(guān)于應(yīng)對(duì)不同光照條件的策略,哪一項(xiàng)是最為有效的?()A.使用固定的閾值對(duì)圖像進(jìn)行二值化處理B.采用自適應(yīng)的圖像增強(qiáng)算法,根據(jù)光照情況調(diào)整圖像C.忽略光照變化,依靠模型的泛化能力D.只在特定的光照條件下收集訓(xùn)練數(shù)據(jù)3、在計(jì)算機(jī)視覺中,圖像增強(qiáng)技術(shù)用于改善圖像的質(zhì)量。以下關(guān)于圖像增強(qiáng)的描述,不正確的是()A.圖像增強(qiáng)可以包括對(duì)比度增強(qiáng)、銳化、去噪等操作B.圖像增強(qiáng)的目的是使圖像更適合人類視覺觀察或后續(xù)的處理任務(wù)C.過度的圖像增強(qiáng)可能會(huì)導(dǎo)致圖像失真或引入噪聲D.圖像增強(qiáng)只對(duì)低質(zhì)量的圖像有效果,對(duì)于高質(zhì)量的圖像沒有必要進(jìn)行增強(qiáng)4、在計(jì)算機(jī)視覺的圖像生成任務(wù)中,假設(shè)要生成逼真的人臉圖像。以下關(guān)于生成模型的架構(gòu)選擇,哪一項(xiàng)是需要特別關(guān)注的?()A.選擇傳統(tǒng)的多層感知機(jī)(MLP)架構(gòu)B.采用生成對(duì)抗網(wǎng)絡(luò)(GAN)架構(gòu),通過對(duì)抗訓(xùn)練生成高質(zhì)量圖像C.運(yùn)用卷積神經(jīng)網(wǎng)絡(luò)(CNN)架構(gòu),但不使用池化層D.構(gòu)建循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)架構(gòu),處理圖像的序列信息5、計(jì)算機(jī)視覺中的圖像去噪旨在去除圖像中的噪聲,同時(shí)保留圖像的細(xì)節(jié)和結(jié)構(gòu)。假設(shè)我們有一張受到嚴(yán)重噪聲污染的醫(yī)學(xué)圖像,以下哪種圖像去噪方法能夠在去除噪聲的同時(shí),最大程度地保留圖像的邊緣和紋理信息?()A.均值濾波B.中值濾波C.高斯濾波D.基于小波變換的去噪方法6、在一個(gè)基于計(jì)算機(jī)視覺的機(jī)器人導(dǎo)航系統(tǒng)中,需要根據(jù)環(huán)境圖像來規(guī)劃機(jī)器人的路徑。以下哪種視覺導(dǎo)航方法可能更適合復(fù)雜動(dòng)態(tài)環(huán)境?()A.基于地圖的導(dǎo)航B.基于視覺里程計(jì)的導(dǎo)航C.基于深度學(xué)習(xí)的端到端導(dǎo)航D.以上都是7、計(jì)算機(jī)視覺中的姿態(tài)估計(jì)是確定物體在三維空間中的位置和方向。假設(shè)要估計(jì)一個(gè)機(jī)器人手臂的姿態(tài),以下關(guān)于姿態(tài)估計(jì)方法的描述,哪一項(xiàng)是不正確的?()A.基于視覺的姿態(tài)估計(jì)可以通過分析物體在圖像中的特征點(diǎn)來計(jì)算其姿態(tài)B.可以結(jié)合多個(gè)攝像頭的圖像信息,提高姿態(tài)估計(jì)的精度和魯棒性C.姿態(tài)估計(jì)通常需要先對(duì)物體進(jìn)行建模,然后通過匹配圖像和模型來確定姿態(tài)D.姿態(tài)估計(jì)的結(jié)果總是非常準(zhǔn)確,不受圖像噪聲、遮擋和物體形狀變化的影響8、對(duì)于圖像的紋理分析任務(wù),假設(shè)要描述和區(qū)分不同類型的紋理,例如木紋和石紋。以下哪種方法可能更有助于準(zhǔn)確分析紋理特征?()A.基于統(tǒng)計(jì)的方法,計(jì)算紋理的灰度共生矩陣B.基于模型的方法,如馬爾可夫隨機(jī)場(chǎng)C.僅通過肉眼觀察和主觀描述紋理D.不進(jìn)行任何紋理分析,直接忽略紋理信息9、在圖像分類任務(wù)中,深度學(xué)習(xí)模型取得了顯著的成果。假設(shè)要對(duì)一組包含不同動(dòng)物的圖像進(jìn)行分類,以下關(guān)于圖像分類模型的描述,正確的是:()A.模型的層數(shù)越多,分類準(zhǔn)確率一定越高B.數(shù)據(jù)增強(qiáng)技術(shù),如旋轉(zhuǎn)、裁剪等,對(duì)模型的性能提升沒有幫助C.結(jié)合多種特征提取方法和分類器,可以提高圖像分類的準(zhǔn)確性和魯棒性D.圖像分類模型不需要考慮圖像的空間信息,只關(guān)注像素值的統(tǒng)計(jì)特征10、在計(jì)算機(jī)視覺的動(dòng)作識(shí)別任務(wù)中,區(qū)分不同的人體動(dòng)作。假設(shè)要從一段視頻中識(shí)別出一個(gè)人是在跑步還是走路,以下關(guān)于動(dòng)作識(shí)別方法的描述,正確的是:()A.基于骨架信息的動(dòng)作識(shí)別方法對(duì)人體姿態(tài)的微小變化不敏感B.只考慮動(dòng)作的空間特征就能準(zhǔn)確識(shí)別不同的動(dòng)作C.融合時(shí)空特征和深度學(xué)習(xí)模型能夠提升動(dòng)作識(shí)別的準(zhǔn)確率D.動(dòng)作識(shí)別的結(jié)果不受視頻拍攝角度和背景干擾的影響11、在計(jì)算機(jī)視覺的應(yīng)用中,人臉識(shí)別是一個(gè)常見的任務(wù)。假設(shè)一個(gè)公司要建立一個(gè)門禁系統(tǒng),通過人臉識(shí)別來允許員工進(jìn)入。為了提高人臉識(shí)別的準(zhǔn)確性和魯棒性,以下哪種技術(shù)通常會(huì)被采用?()A.基于幾何特征的人臉識(shí)別B.基于模板匹配的人臉識(shí)別C.基于深度學(xué)習(xí)的人臉識(shí)別,結(jié)合多模態(tài)數(shù)據(jù)D.基于顏色特征的人臉識(shí)別12、計(jì)算機(jī)視覺在體育賽事分析中的應(yīng)用可以提供更深入的比賽洞察。假設(shè)要分析一場(chǎng)足球比賽中球員的跑位和傳球模式,以下關(guān)于體育賽事計(jì)算機(jī)視覺應(yīng)用的描述,正確的是:()A.僅依靠球員的位置信息就能全面分析比賽中的戰(zhàn)術(shù)和策略B.球員的速度和加速度等動(dòng)態(tài)信息對(duì)比賽分析的價(jià)值不大C.結(jié)合深度學(xué)習(xí)和軌跡分析技術(shù)可以更有效地挖掘比賽中的關(guān)鍵模式和趨勢(shì)D.比賽場(chǎng)地的光照和攝像機(jī)視角對(duì)計(jì)算機(jī)視覺分析的結(jié)果沒有影響13、在計(jì)算機(jī)視覺的場(chǎng)景理解任務(wù)中,需要對(duì)整個(gè)圖像場(chǎng)景進(jìn)行分析和解釋。假設(shè)我們有一張城市街道的圖像,要理解其中的道路、建筑物、車輛和行人之間的關(guān)系。以下哪種方法能夠提供更全面和深入的場(chǎng)景理解?()A.基于對(duì)象檢測(cè)和分類的方法B.基于語義分割和圖模型的方法C.基于深度學(xué)習(xí)的場(chǎng)景解析網(wǎng)絡(luò)D.基于特征匹配和聚類的方法14、視頻分析是計(jì)算機(jī)視覺的一個(gè)重要領(lǐng)域。假設(shè)要對(duì)一段監(jiān)控視頻中的行為進(jìn)行分析和理解,以下關(guān)于視頻分析方法的描述,正確的是:()A.直接將視頻中的每一幀圖像作為獨(dú)立的圖像進(jìn)行處理,就能準(zhǔn)確分析視頻中的行為B.考慮視頻的時(shí)序信息和幀間的相關(guān)性對(duì)于理解復(fù)雜的行為非常重要C.視頻分析只適用于簡單的動(dòng)作識(shí)別,對(duì)于復(fù)雜的多人物交互行為無法處理D.視頻的分辨率和幀率對(duì)視頻分析的結(jié)果沒有影響15、在計(jì)算機(jī)視覺的圖像檢索任務(wù)中,需要根據(jù)用戶提供的查詢圖像找到相似的圖像。假設(shè)我們有一個(gè)大型的圖像數(shù)據(jù)庫,以下哪種圖像表示方法能夠提高圖像檢索的效率和準(zhǔn)確性?()A.基于全局特征的圖像表示B.基于局部特征的圖像表示C.基于深度學(xué)習(xí)的圖像嵌入表示D.基于顏色直方圖的圖像表示16、圖像分割是將圖像分成不同的區(qū)域或?qū)ο蟆<僭O(shè)要對(duì)醫(yī)學(xué)影像中的腫瘤區(qū)域進(jìn)行精確分割,以下關(guān)于圖像分割方法的描述,正確的是:()A.手動(dòng)分割是最準(zhǔn)確的方法,不需要借助計(jì)算機(jī)算法B.基于閾值的圖像分割方法能夠適用于所有類型的醫(yī)學(xué)影像分割問題C.深度學(xué)習(xí)中的全卷積網(wǎng)絡(luò)(FCN)及其變體在醫(yī)學(xué)圖像分割中具有很大的潛力D.圖像分割的結(jié)果只取決于所使用的分割算法,與圖像的預(yù)處理無關(guān)17、在計(jì)算機(jī)視覺的目標(biāo)跟蹤任務(wù)中,需要持續(xù)跟蹤一個(gè)或多個(gè)運(yùn)動(dòng)目標(biāo)。假設(shè)要跟蹤一個(gè)在操場(chǎng)上跑步的人。以下關(guān)于目標(biāo)跟蹤算法的描述,哪一項(xiàng)是不正確的?()A.可以基于特征匹配的方法,在連續(xù)的幀中找到目標(biāo)的相似特征來實(shí)現(xiàn)跟蹤B.深度學(xué)習(xí)中的相關(guān)濾波算法能夠快速準(zhǔn)確地跟蹤目標(biāo),適應(yīng)目標(biāo)的外觀變化C.目標(biāo)跟蹤算法能夠在目標(biāo)被遮擋或短暫消失后,仍然準(zhǔn)確地恢復(fù)跟蹤D.無論目標(biāo)的運(yùn)動(dòng)速度和軌跡如何復(fù)雜,目標(biāo)跟蹤算法都能完美地跟蹤18、當(dāng)利用計(jì)算機(jī)視覺進(jìn)行圖像語義分割任務(wù),例如將圖像中的不同物體分割出來,以下哪種深度學(xué)習(xí)架構(gòu)可能在分割精度和效率方面表現(xiàn)較好?()A.FCNB.U-NetC.SegNetD.以上都是19、在計(jì)算機(jī)視覺的視頻壓縮中,為了在保證視覺質(zhì)量的同時(shí)減少數(shù)據(jù)量,以下哪種技術(shù)可能被廣泛應(yīng)用?()A.運(yùn)動(dòng)估計(jì)和補(bǔ)償B.圖像分割C.特征點(diǎn)檢測(cè)D.邊緣檢測(cè)20、當(dāng)進(jìn)行視頻中的動(dòng)作識(shí)別時(shí),假設(shè)要分析一段運(yùn)動(dòng)員訓(xùn)練的視頻,識(shí)別出其中的各種動(dòng)作,如跑步、跳躍和舉重等。視頻中的動(dòng)作可能存在速度變化、遮擋和視角變化等問題。為了準(zhǔn)確識(shí)別這些動(dòng)作,以下哪種技術(shù)是關(guān)鍵的?()A.對(duì)每一幀圖像進(jìn)行獨(dú)立的動(dòng)作分類,然后綜合結(jié)果B.利用光流信息來捕捉視頻中的運(yùn)動(dòng)模式C.只關(guān)注視頻中的關(guān)鍵幀,忽略其他幀D.不考慮視頻的時(shí)序信息,將其視為一系列獨(dú)立的圖像21、在進(jìn)行計(jì)算機(jī)視覺的三維重建時(shí),需要從多個(gè)視角的圖像中恢復(fù)物體的三維形狀和結(jié)構(gòu)。假設(shè)要對(duì)一個(gè)復(fù)雜的古建筑進(jìn)行三維重建,圖像采集存在視角偏差和部分遮擋。以下哪種三維重建方法在處理這種不完整和有噪聲的數(shù)據(jù)時(shí)效果較好?()A.基于立體視覺的重建B.基于運(yùn)動(dòng)恢復(fù)結(jié)構(gòu)(SfM)的重建C.基于激光掃描的重建D.基于深度學(xué)習(xí)的重建22、計(jì)算機(jī)視覺在農(nóng)業(yè)領(lǐng)域的應(yīng)用可以幫助實(shí)現(xiàn)精準(zhǔn)農(nóng)業(yè)。假設(shè)一個(gè)農(nóng)場(chǎng)需要通過計(jì)算機(jī)視覺監(jiān)測(cè)農(nóng)作物的生長狀況。以下關(guān)于計(jì)算機(jī)視覺在農(nóng)業(yè)中的描述,哪一項(xiàng)是錯(cuò)誤的?()A.可以檢測(cè)農(nóng)作物的病蟲害,及時(shí)采取防治措施B.能夠評(píng)估農(nóng)作物的生長階段和成熟度,指導(dǎo)收獲時(shí)間C.計(jì)算機(jī)視覺在農(nóng)業(yè)中的應(yīng)用完全不受天氣和光照條件的影響D.可以通過無人機(jī)搭載攝像頭進(jìn)行大面積的農(nóng)田監(jiān)測(cè)23、當(dāng)進(jìn)行圖像的光流估計(jì)時(shí),假設(shè)要計(jì)算圖像中像素的運(yùn)動(dòng)速度和方向。以下哪種光流估計(jì)算法在復(fù)雜場(chǎng)景下可能更準(zhǔn)確?()A.Horn-Schunck算法B.Lucas-Kanade算法C.隨機(jī)估計(jì)光流D.不進(jìn)行光流估計(jì),忽略像素的運(yùn)動(dòng)信息24、在計(jì)算機(jī)視覺的圖像配準(zhǔn)任務(wù)中,假設(shè)要將兩張拍攝角度不同的同一物體的圖像進(jìn)行對(duì)齊。以下關(guān)于特征匹配的方法,哪一項(xiàng)是不太可靠的?()A.使用SIFT(Scale-InvariantFeatureTransform)特征進(jìn)行匹配B.基于像素值的直接比較進(jìn)行匹配C.利用SURF(SpeededUpRobustFeatures)特征進(jìn)行匹配D.通過ORB(OrientedFASTandRotatedBRIEF)特征進(jìn)行匹配25、在計(jì)算機(jī)視覺的圖像去噪任務(wù)中,假設(shè)要去除一張受到嚴(yán)重噪聲污染的圖像中的噪聲,同時(shí)盡可能保留圖像的細(xì)節(jié)和邊緣信息。以下哪種去噪方法可能更適合?()A.中值濾波,用鄰域中值代替像素值B.均值濾波,用鄰域平均值代替像素值C.基于深度學(xué)習(xí)的圖像去噪模型,如DnCNND.不進(jìn)行任何去噪處理,保留原始噪聲圖像26、在計(jì)算機(jī)視覺的立體視覺任務(wù)中,通過兩個(gè)或多個(gè)相機(jī)獲取的圖像來計(jì)算深度信息。以下哪種立體匹配算法在精度和效率方面可能表現(xiàn)較好?()A.基于區(qū)域的匹配算法B.基于特征的匹配算法C.基于深度學(xué)習(xí)的匹配算法D.以上都是27、在計(jì)算機(jī)視覺中,目標(biāo)檢測(cè)是一項(xiàng)重要任務(wù)。假設(shè)要在一張包含眾多物體的復(fù)雜圖像中準(zhǔn)確檢測(cè)出不同類型的車輛,例如轎車、卡車和摩托車。圖像中的車輛可能具有不同的顏色、大小和姿態(tài),而且背景也較為復(fù)雜。為了實(shí)現(xiàn)高精度的車輛檢測(cè),以下哪種方法通常被認(rèn)為是最有效的?()A.基于傳統(tǒng)圖像處理技術(shù),如邊緣檢測(cè)和形態(tài)學(xué)操作B.使用基于深度學(xué)習(xí)的目標(biāo)檢測(cè)算法,如FasterR-CNNC.采用簡單的模板匹配方法,根據(jù)預(yù)先定義的車輛模板進(jìn)行匹配D.對(duì)圖像進(jìn)行全局特征提取,然后基于這些特征進(jìn)行分類28、在計(jì)算機(jī)視覺中,深度估計(jì)是確定場(chǎng)景中物體距離相機(jī)的距離。以下關(guān)于深度估計(jì)的說法,錯(cuò)誤的是()A.可以通過立體視覺、結(jié)構(gòu)光或飛行時(shí)間等技術(shù)來獲取深度信息B.深度學(xué)習(xí)方法在單目深度估計(jì)中取得了顯著進(jìn)展C.深度估計(jì)對(duì)于三維重建、虛擬現(xiàn)實(shí)和增強(qiáng)現(xiàn)實(shí)等應(yīng)用具有重要意義D.深度估計(jì)的結(jié)果總是非常精確,不需要進(jìn)行后處理和優(yōu)化29、在計(jì)算機(jī)視覺中,圖像超分辨率重建是提高圖像分辨率和質(zhì)量的技術(shù)。以下關(guān)于圖像超分辨率重建的敘述,不正確的是()A.圖像超分辨率重建可以通過插值、基于模型的方法或深度學(xué)習(xí)方法來實(shí)現(xiàn)B.深度學(xué)習(xí)方法在圖像超分辨率重建中能夠生成更清晰、逼真的細(xì)節(jié)C.圖像超分辨率重建在醫(yī)學(xué)圖像、衛(wèi)星圖像和監(jiān)控圖像等領(lǐng)域有重要的應(yīng)用D.圖像超分辨率重建可以無限制地提高圖像的分辨率,不受原始圖像信息的限制30、在計(jì)算機(jī)視覺的自動(dòng)駕駛應(yīng)用中,車輛需要準(zhǔn)確識(shí)別道路標(biāo)志、交通信號(hào)燈和其他車輛的狀態(tài)。對(duì)于實(shí)時(shí)性和準(zhǔn)確性要求極高的場(chǎng)景,以下哪種傳感器融合技術(shù)能夠?yàn)檐囕v提供更全面和可靠的環(huán)境感知?()A.攝像頭與激光雷達(dá)的融合B.毫米波雷達(dá)與超聲波傳感器的融合C.多種攝像頭的融合D.以上都是二、應(yīng)用題(本大題共5個(gè)小題,共25分)1、(本題5分)運(yùn)用圖像識(shí)別技術(shù),檢測(cè)物流分揀中心的包裹分類準(zhǔn)確性。2、(本題5分)使用目標(biāo)跟蹤算法,跟蹤馬戲表演中動(dòng)物的表演動(dòng)作。3、(本題5分)基于計(jì)算機(jī)視覺的疲勞駕駛檢測(cè)系統(tǒng),及時(shí)提醒駕駛員注意休息。4、(本題5分)利用圖像識(shí)別技術(shù),對(duì)不同品牌的化妝品包裝進(jìn)行識(shí)別和分類。5、(本題5分)基于計(jì)算機(jī)視覺的手勢(shì)識(shí)別系統(tǒng),實(shí)現(xiàn)簡單的手勢(shì)控制操作。三、簡答題(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 牙科種植牙課程設(shè)計(jì)
- 給水畢業(yè)課程設(shè)計(jì)
- 2024年安全員-C證考試題庫
- 河流黃河課程設(shè)計(jì)
- 礦渣烘干車間課程設(shè)計(jì)
- 算法課程設(shè)計(jì) 主觀題
- 線性課程設(shè)計(jì)分享
- 紋繡技巧教學(xué)課程設(shè)計(jì)
- 組成原理課程設(shè)計(jì)體會(huì)
- 水位報(bào)警器課程設(shè)計(jì)
- 成人經(jīng)鼻高流量濕化氧療臨床規(guī)范應(yīng)用專家共識(shí)解讀
- 2024信息技術(shù)應(yīng)用創(chuàng)新信息系統(tǒng)適配改造成本度量
- 廣東省廣州市2025屆高三上學(xué)期12月調(diào)研測(cè)試(零模)英語 含解析
- 陜西測(cè)繪地理信息局所屬事業(yè)單位2025年上半年招聘87人和重點(diǎn)基礎(chǔ)提升(共500題)附帶答案詳解
- 保險(xiǎn)學(xué)期末試題及答案
- 高一數(shù)學(xué)上學(xué)期期末模擬試卷01-【中職專用】2024-2025學(xué)年高一數(shù)學(xué)上學(xué)期(高教版2023基礎(chǔ)模塊)(解析版)
- 《外傷性顱內(nèi)積氣》課件
- 2024-2025學(xué)年人教版八年級(jí)上冊(cè)地理期末測(cè)試卷(一)(含答案)
- 統(tǒng)編版(2024新版)七年級(jí)上冊(cè)道德與法治第四單元綜合測(cè)試卷(含答案)
- 滬教版英語小學(xué)六年級(jí)上學(xué)期期末試題與參考答案(2024-2025學(xué)年)
- 北京市海淀區(qū)2023-2024學(xué)年四年級(jí)上學(xué)期語文期末試卷
評(píng)論
0/150
提交評(píng)論