




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
裝訂線裝訂線PAGE2第1頁,共3頁湖北科技學(xué)院
《圖形創(chuàng)意》2022-2023學(xué)年第一學(xué)期期末試卷院(系)_______班級_______學(xué)號_______姓名_______題號一二三四總分得分批閱人一、單選題(本大題共20個小題,每小題1分,共20分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、圖像分類是計算機(jī)視覺的基本任務(wù)之一。假設(shè)要對大量的動物圖像進(jìn)行分類,將其分為貓、狗、兔子等類別。在進(jìn)行圖像分類時,以下關(guān)于特征提取的描述,正確的是:()A.手工設(shè)計的特征,如顏色直方圖、紋理特征等,總是比自動學(xué)習(xí)的特征更有效B.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)能夠自動學(xué)習(xí)到具有判別性的圖像特征,無需人工干預(yù)C.特征提取的好壞對圖像分類的結(jié)果影響不大,主要取決于分類器的性能D.為了提高分類準(zhǔn)確率,應(yīng)該盡可能多地提取圖像的各種特征,而不考慮特征的冗余性2、在計算機(jī)視覺的姿態(tài)估計任務(wù)中,需要確定物體在三維空間中的方向和位置。假設(shè)我們要估計一個機(jī)器人手臂的姿態(tài),以下哪種技術(shù)通常被用于獲取準(zhǔn)確的姿態(tài)信息?()A.基于視覺標(biāo)記的姿態(tài)估計B.基于深度學(xué)習(xí)的姿態(tài)估計C.基于幾何約束的姿態(tài)估計D.基于慣性測量單元(IMU)的姿態(tài)估計3、計算機(jī)視覺中,以下哪個任務(wù)通常需要對圖像中的目標(biāo)進(jìn)行定位和分類?()A.圖像生成B.目標(biāo)檢測C.圖像超分辨率D.圖像去噪4、在計算機(jī)視覺的圖像檢索任務(wù)中,需要根據(jù)用戶提供的示例圖像從大規(guī)模圖像數(shù)據(jù)庫中找到相似的圖像。假設(shè)要構(gòu)建一個高效的圖像搜索引擎,能夠快速準(zhǔn)確地返回相關(guān)圖像。以下哪種圖像檢索方法在處理大規(guī)模數(shù)據(jù)時性能更優(yōu)?()A.基于內(nèi)容的圖像檢索B.基于文本標(biāo)注的圖像檢索C.基于哈希編碼的圖像檢索D.基于深度學(xué)習(xí)特征的圖像檢索5、在計算機(jī)視覺的圖像分割任務(wù)中,需要將圖像中的不同物體或區(qū)域準(zhǔn)確地劃分出來。假設(shè)要對一張包含多個水果的圖像進(jìn)行精確分割,每個水果的邊界可能不清晰,且存在部分重疊和陰影。以下哪種圖像分割算法在處理這種具有挑戰(zhàn)性的情況時表現(xiàn)更為出色?()A.基于閾值的分割B.基于區(qū)域的分割C.基于邊緣檢測的分割D.基于深度學(xué)習(xí)的語義分割6、在進(jìn)行計算機(jī)視覺的三維重建時,需要從多個視角的圖像中恢復(fù)物體的三維形狀和結(jié)構(gòu)。假設(shè)要對一個復(fù)雜的古建筑進(jìn)行三維重建,圖像采集存在視角偏差和部分遮擋。以下哪種三維重建方法在處理這種不完整和有噪聲的數(shù)據(jù)時效果較好?()A.基于立體視覺的重建B.基于運動恢復(fù)結(jié)構(gòu)(SfM)的重建C.基于激光掃描的重建D.基于深度學(xué)習(xí)的重建7、目標(biāo)檢測是計算機(jī)視覺中的常見任務(wù),例如在監(jiān)控視頻中檢測行人或車輛。假設(shè)我們要開發(fā)一個目標(biāo)檢測系統(tǒng),以下關(guān)于目標(biāo)檢測算法的描述,哪一項是不正確的?()A.基于區(qū)域建議的方法,如R-CNN系列算法,通過生成候選區(qū)域并對其進(jìn)行分類和定位來實現(xiàn)目標(biāo)檢測B.一階段目標(biāo)檢測算法,如YOLO和SSD,直接在圖像上進(jìn)行目標(biāo)的分類和定位,速度相對較快C.目標(biāo)檢測算法的性能通常用準(zhǔn)確率、召回率和平均精度均值(mAP)等指標(biāo)來評估D.目標(biāo)檢測算法的精度和速度是相互獨立的,提高精度不會影響速度,反之亦然8、在計算機(jī)視覺的圖像超分辨率任務(wù)中,假設(shè)要將一張低分辨率圖像恢復(fù)為高分辨率圖像。以下關(guān)于圖像超分辨率方法的描述,正確的是:()A.基于插值的方法簡單快速,但恢復(fù)出的圖像細(xì)節(jié)不夠清晰B.基于深度學(xué)習(xí)的方法能夠生成逼真的高分辨率圖像,但需要大量的訓(xùn)練數(shù)據(jù)和計算資源C.圖像超分辨率技術(shù)可以無限制地提高圖像的分辨率,不受硬件限制D.所有的圖像超分辨率方法都能夠完全恢復(fù)出原始高分辨率圖像的所有信息9、在計算機(jī)視覺的目標(biāo)跟蹤任務(wù)中,需要在連續(xù)的圖像幀中持續(xù)跟蹤一個特定的目標(biāo)。假設(shè)要跟蹤一個在運動場上快速移動且形狀變化的運動員,同時存在其他相似物體的干擾。以下哪種目標(biāo)跟蹤算法在這種具有挑戰(zhàn)性的場景下表現(xiàn)更佳?()A.基于卡爾曼濾波的跟蹤B.基于粒子濾波的跟蹤C(jī).基于深度學(xué)習(xí)的跟蹤D.基于均值漂移的跟蹤10、計算機(jī)視覺中的圖像去噪旨在去除圖像中的噪聲,恢復(fù)清晰的圖像。假設(shè)要處理一張受到嚴(yán)重噪聲污染的天文圖像,以下關(guān)于去噪算法的選擇,哪一項是需要謹(jǐn)慎考慮的?()A.選擇基于濾波的去噪算法,如中值濾波B.采用基于深度學(xué)習(xí)的去噪算法,如自編碼器C.只考慮去噪效果,不關(guān)心圖像細(xì)節(jié)的保留D.根據(jù)噪聲的類型和強(qiáng)度選擇合適的去噪算法11、在計算機(jī)視覺的文本檢測和識別任務(wù)中,假設(shè)要從一張圖片中提取并識別其中的文字信息。以下關(guān)于文本檢測和識別的描述,哪一項是不正確的?()A.可以先通過文本檢測算法定位圖片中的文本區(qū)域,然后進(jìn)行識別B.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)在文本識別中表現(xiàn)出色,能夠準(zhǔn)確識別各種字體和風(fēng)格的文字C.文本檢測和識別對于彎曲、傾斜和模糊的文字能夠輕松應(yīng)對,沒有任何困難D.可以結(jié)合光學(xué)字符識別(OCR)技術(shù),將圖片中的文字轉(zhuǎn)換為可編輯的文本12、計算機(jī)視覺在工業(yè)檢測中的應(yīng)用可以提高生產(chǎn)效率和質(zhì)量。假設(shè)要檢測生產(chǎn)線上產(chǎn)品的表面缺陷,以下關(guān)于工業(yè)檢測中的計算機(jī)視覺技術(shù)的描述,正確的是:()A.傳統(tǒng)的機(jī)器視覺方法在檢測復(fù)雜的表面缺陷時比深度學(xué)習(xí)方法更可靠B.深度學(xué)習(xí)模型需要大量的有缺陷和無缺陷樣本進(jìn)行訓(xùn)練,才能準(zhǔn)確檢測出各種缺陷C.工業(yè)檢測中的計算機(jī)視覺系統(tǒng)不需要考慮實時性和準(zhǔn)確性的平衡D.產(chǎn)品的顏色和材質(zhì)對表面缺陷檢測的結(jié)果沒有影響13、計算機(jī)視覺在文物保護(hù)和修復(fù)中具有潛在應(yīng)用。假設(shè)要對一件受損的古代書畫進(jìn)行數(shù)字化修復(fù),以下關(guān)于計算機(jī)視覺在文物保護(hù)中的作用的描述,哪一項是不正確的?()A.可以通過圖像增強(qiáng)和去噪技術(shù)改善書畫的視覺效果B.利用圖像匹配和拼接技術(shù)還原殘缺的部分C.計算機(jī)視覺技術(shù)能夠完全恢復(fù)文物的原始狀態(tài),使其與未受損時一模一樣D.為文物修復(fù)專家提供輔助決策和參考依據(jù)14、圖像檢索是計算機(jī)視覺的一個重要應(yīng)用。假設(shè)我們要在一個大型圖像數(shù)據(jù)庫中快速找到與給定查詢圖像相似的圖像,以下哪種圖像表示方法可能對提高檢索效率有幫助?()A.全局特征表示B.局部特征表示C.基于深度學(xué)習(xí)的特征表示D.基于顏色直方圖的特征表示15、在計算機(jī)視覺的圖像修復(fù)任務(wù)中,假設(shè)圖像中有大面積的損壞或缺失區(qū)域,以下哪種方法可能更依賴于對圖像全局結(jié)構(gòu)的理解?()A.基于紋理合成的方法B.基于擴(kuò)散的方法C.基于深度學(xué)習(xí)的方法D.基于樣例的方法16、在計算機(jī)視覺的自動駕駛應(yīng)用中,車輛需要準(zhǔn)確識別道路標(biāo)志、交通信號燈和其他車輛的狀態(tài)。對于實時性和準(zhǔn)確性要求極高的場景,以下哪種傳感器融合技術(shù)能夠為車輛提供更全面和可靠的環(huán)境感知?()A.攝像頭與激光雷達(dá)的融合B.毫米波雷達(dá)與超聲波傳感器的融合C.多種攝像頭的融合D.以上都是17、計算機(jī)視覺中的無人駕駛技術(shù)是一個綜合性的應(yīng)用領(lǐng)域。以下關(guān)于無人駕駛中的計算機(jī)視覺的說法,不正確的是()A.計算機(jī)視覺在無人駕駛中用于環(huán)境感知、目標(biāo)檢測、路徑規(guī)劃和障礙物避讓等任務(wù)B.深度學(xué)習(xí)方法能夠?qū)崟r準(zhǔn)確地識別道路標(biāo)志、車輛和行人等物體C.無人駕駛中的計算機(jī)視覺系統(tǒng)已經(jīng)非常成熟,能夠應(yīng)對各種復(fù)雜的交通場景D.惡劣天氣條件和光照變化等因素仍然是無人駕駛中計算機(jī)視覺面臨的挑戰(zhàn)18、在計算機(jī)視覺的研究中,數(shù)據(jù)集的質(zhì)量和規(guī)模對模型的訓(xùn)練和性能評估至關(guān)重要。以下關(guān)于數(shù)據(jù)集的描述,不準(zhǔn)確的是()A.大規(guī)模、多樣化和標(biāo)注準(zhǔn)確的數(shù)據(jù)集有助于訓(xùn)練出泛化能力強(qiáng)的模型B.一些公開的數(shù)據(jù)集如ImageNet、COCO等為計算機(jī)視覺研究提供了重要的基準(zhǔn)C.數(shù)據(jù)集的構(gòu)建需要耗費大量的時間和人力,但可以通過數(shù)據(jù)增強(qiáng)技術(shù)來減少對原始數(shù)據(jù)的需求D.數(shù)據(jù)集一旦構(gòu)建完成,就不需要再進(jìn)行更新和擴(kuò)展,能夠一直滿足研究的需求19、在計算機(jī)視覺的圖像分類任務(wù)中,假設(shè)要處理類別不均衡的數(shù)據(jù)集,即某些類別的樣本數(shù)量遠(yuǎn)遠(yuǎn)少于其他類別。以下關(guān)于處理類別不均衡的方法描述,正確的是:()A.直接使用傳統(tǒng)的分類算法,類別不均衡不會對結(jié)果產(chǎn)生明顯影響B(tài).過采樣少數(shù)類別的樣本可以增加其數(shù)量,但可能導(dǎo)致過擬合C.欠采樣多數(shù)類別的樣本能夠平衡數(shù)據(jù)集,但會丟失部分有用信息D.類別不均衡問題無法通過數(shù)據(jù)處理方法解決,只能通過改進(jìn)分類算法來應(yīng)對20、在計算機(jī)視覺的圖像檢索任務(wù)中,假設(shè)要從一個大型圖像數(shù)據(jù)庫中快速找到與給定查詢圖像相似的圖像。這些圖像可能在內(nèi)容、風(fēng)格和主題上存在差異。為了提高檢索的效率和準(zhǔn)確性,以下哪種方法通常被采用?()A.基于全局特征的圖像表示和相似性度量B.只對圖像的標(biāo)簽進(jìn)行文本匹配,忽略圖像內(nèi)容C.隨機(jī)選擇數(shù)據(jù)庫中的圖像作為檢索結(jié)果D.不進(jìn)行任何預(yù)處理,直接在原始圖像上進(jìn)行檢索二、簡答題(本大題共5個小題,共25分)1、(本題5分)說明計算機(jī)視覺在物流配送優(yōu)化中的作用。2、(本題5分)簡述計算機(jī)視覺在電力系統(tǒng)中的線路巡檢和故障檢測。3、(本題5分)描述計算機(jī)視覺在物流倉儲中的應(yīng)用。4、(本題5分)簡述圖像的多尺度分析方法。5、(本題5分)計算機(jī)視覺中如何對古代建筑進(jìn)行數(shù)字化建模?三、分析題(本大題共5個小題,共25分)1、(本題5分)分析某電商平臺的促銷活動頁面設(shè)計,探討其在色彩、排版、商品展示等方面如何吸引用戶參與促銷活動,提高銷售額。2、(本題5分)以某音樂節(jié)的志愿者招募海報為例,分析其如何運用視覺元素傳達(dá)音樂節(jié)的魅力和志愿者的價值,吸引志愿者報名。3、(本題5分)觀察某時尚品牌的線上購物頁面設(shè)計,闡述其如何通過視覺效果和用戶體驗促進(jìn)銷售。4、(本題5分)解析某汽車品牌的車展
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度旅游景區(qū)商鋪租賃及景區(qū)環(huán)保責(zé)任承諾合同
- 二零二五年度企業(yè)員工三年漲薪保障合同
- 二零二五年度合伙終止合同:智慧家居產(chǎn)品合作解除協(xié)議
- 二零二五年度超市商品促銷陳列效果評估合同
- 離婚協(xié)議中財產(chǎn)分割爭議解決補(bǔ)充協(xié)議(2025年度)
- 二零二五年度農(nóng)村宅基地贈與及搬遷安置協(xié)議范本
- 二零二五年度債權(quán)債務(wù)轉(zhuǎn)讓協(xié)議范本匯編
- 2025年度獨家研發(fā)成果價格保密協(xié)議
- 二零二五年度初創(chuàng)企業(yè)代理招聘合同范本
- 二零二五年度茶山資產(chǎn)轉(zhuǎn)讓與品牌共享合同
- 社會情感學(xué)習(xí)在學(xué)校中的推廣
- 中國胎兒心臟超聲檢查指南
- 學(xué)校教育中的品牌塑造與校園文化建設(shè)培訓(xùn)課件
- 中移光纜培訓(xùn)資料
- 消防救援-低溫雨雪冰凍惡劣天氣條件下災(zāi)害防范及救援行動與安全
- 濟(jì)南廣播電視臺面向社會招聘工作人員筆試參考題庫(共500題)答案詳解版
- 主播試用期合同模板
- 《市場營銷學(xué)》吳建安
- 【公司會計信息化建設(shè)研究文獻(xiàn)綜述2000字】
- 滄州師范學(xué)院學(xué)士學(xué)位論文寫作指南2020版
- 【高中語文】《中國人民站起來了》課件40張+統(tǒng)編版高中語文選擇性必修上冊
評論
0/150
提交評論