版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
第01課函數(shù)的概念及其表示(分層專項精練)【一層練基礎】一、單選題1.(2023·山東濰坊·統(tǒng)考一模)存在函數(shù)SKIPIF1<0滿足:對任意SKIPIF1<0都有(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2005·江西·高考真題)函數(shù)SKIPIF1<0的定義域為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.(2023·全國·高三專題練習)已知函數(shù)SKIPIF1<0滿足SKIPIF1<0,則(
)A.SKIPIF1<0的最小值為2 B.SKIPIF1<0C.SKIPIF1<0的最大值為2 D.SKIPIF1<04.(2023·全國·高三專題練習)已知函數(shù)SKIPIF1<0,SKIPIF1<0,若存在SKIPIF1<0,使得SKIPIF1<0,則SKIPIF1<0的取值范圍是A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<05.(2023·全國·高三專題練習)已知函數(shù)SKIPIF1<0是一次函數(shù),且SKIPIF1<0恒成立,則SKIPIF1<0A.1 B.3 C.5 D.76.(2023·高一課時練習)已知函數(shù)SKIPIF1<0在定義域SKIPIF1<0上單調(diào),且均有SKIPIF1<0,則SKIPIF1<0的值為(
)A.3 B.1 C.0 D.SKIPIF1<07.(2022秋·廣西防城港·高一防城港市高級中學??茧A段練習)下列各組函數(shù)中,表示同一函數(shù)的是(
)A.SKIPIF1<0,SKIPIF1<0 B.SKIPIF1<0,SKIPIF1<0C.SKIPIF1<0,SKIPIF1<0 D.SKIPIF1<0,SKIPIF1<08.(2007·安徽·高考真題)如圖中的圖象所表示的函數(shù)的解析式為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<09.(2021·陜西咸陽·校考模擬預測)對于函數(shù)SKIPIF1<0,部分x與y的對應關系如下表:x…123456789…y…375961824…數(shù)列SKIPIF1<0滿足:SKIPIF1<0,且對于任意SKIPIF1<0,點SKIPIF1<0都在函數(shù)SKIPIF1<0的圖象上,則SKIPIF1<0(
)A.7576 B.7575 C.7569 D.756410.(2012·江西·高考真題)設函數(shù)f(x)=SKIPIF1<0則f(f(3))=()A.SKIPIF1<0 B.3 C.SKIPIF1<0 D.SKIPIF1<011.(2019·福建泉州·福建省永春第一中學??寄M預測)已知函數(shù)SKIPIF1<0,SKIPIF1<0,設SKIPIF1<0為實數(shù),若存在實數(shù)SKIPIF1<0,使得SKIPIF1<0成立,則SKIPIF1<0的取值范圍為A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<012.(2023·遼寧沈陽·統(tǒng)考三模)已知函數(shù)SKIPIF1<0,若SKIPIF1<0的值域是SKIPIF1<0,則實數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<013.(2022秋·陜西西安·高一西安市鐵一中學??计谥校┮阎瘮?shù)SKIPIF1<0是(-∞,+∞)上的減函數(shù),則a的取值范圍是(
)A.(0,3) B.(0,3] C.(0,2) D.(0,2]14.(2022秋·甘肅蘭州·高一蘭州市第二中學??计谀┮阎猄KIPIF1<0的值域為SKIPIF1<0,那么SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0二、多選題15.(2023·高二課時練習)已知函數(shù)SKIPIF1<0,則(
)A.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等差數(shù)列 B.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等差數(shù)列C.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等比數(shù)列 D.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等比數(shù)列16.(2022·高一單元測試)下列說法不正確的是(
)A.函數(shù)SKIPIF1<0在定義域內(nèi)是減函數(shù)B.若SKIPIF1<0是奇函數(shù),則一定有SKIPIF1<0C.已知函數(shù)SKIPIF1<0在SKIPIF1<0上是增函數(shù),則實數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0D.若SKIPIF1<0的定義域為SKIPIF1<0,則SKIPIF1<0的定義域為SKIPIF1<017.(2022·全國·高三專題練習)已知函數(shù)SKIPIF1<0,則下列敘述正確的是(
)A.SKIPIF1<0的值域為SKIPIF1<0 B.SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增C.SKIPIF1<0 D.若SKIPIF1<0,則SKIPIF1<0的最小值為-318.(2023·海南·校聯(lián)考模擬預測)已知定義在SKIPIF1<0上的函數(shù)SKIPIF1<0不恒等于零,同時滿足SKIPIF1<0,且當SKIPIF1<0時,SKIPIF1<0,那么當SKIPIF1<0時,下列結(jié)論不正確的為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<019.(2022·全國·高三專題練習)已知函數(shù)SKIPIF1<0,則()A.f(g(1))=11 B.g(f(1))=35C.f(g(x))=3·2x+3x+2 D.SKIPIF1<020.(2022秋·云南曲靖·高三曲靖一中??茧A段練習)函數(shù)SKIPIF1<0分別是定義在SKIPIF1<0上的奇函數(shù)和偶函數(shù),且SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<021.(2021秋·全國·高一期中)已知函數(shù)SKIPIF1<0,則有()A.存在SKIPIF1<0,使得SKIPIF1<0B.存在SKIPIF1<0,使得SKIPIF1<0C.函數(shù)SKIPIF1<0與SKIPIF1<0的單調(diào)區(qū)間和單調(diào)性相同D.若SKIPIF1<0且SKIPIF1<0,則SKIPIF1<022.(2021秋·湖北荊門·高一荊門市龍泉中學校考階段練習)已知函數(shù)SKIPIF1<0,若SKIPIF1<0的最小值為SKIPIF1<0,則實數(shù)a的值可以是(
)A.1 B.2 C.3 D.4三、填空題23.(2018·山西·校聯(lián)考一模)設SKIPIF1<0表示不超過SKIPIF1<0的最大整數(shù),如SKIPIF1<0,SKIPIF1<0,則方程SKIPIF1<0的解集為.24.(2022·安徽滁州·校考模擬預測)已知函數(shù)SKIPIF1<0,則SKIPIF1<0.25.(2023·山東棗莊·統(tǒng)考模擬預測)已知函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的減函數(shù),且SKIPIF1<0,則SKIPIF1<0的取值范圍是.26.(2023·全國·高二專題練習)寫出一個同時具備下列性質(zhì)①②③的函數(shù)SKIPIF1<0.①定義城為SKIPIF1<0,②導函數(shù)SKIPIF1<0;③值域為SKIPIF1<027.(2022·高二課時練習)已知函數(shù)SKIPIF1<0的值域為SKIPIF1<0,則SKIPIF1<0的定義域可以是.(寫出一個符合條件的即可)28.(2021·全國·高三專題練習)設函數(shù)SKIPIF1<0,若SKIPIF1<0恒成立,則實數(shù)SKIPIF1<0的值為.29.(2022·全國·高三專題練習)函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,圖象如圖1所示,函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,圖象如圖2所示.若集合SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0中有個元素.30.(2022秋·高一單元測試)已知函數(shù)SKIPIF1<0,則不等式SKIPIF1<0的解集為.31.(2022·全國·高三專題練習)若a>0且a≠1,且函數(shù)SKIPIF1<0在R上單調(diào)遞增,那么a的取值范圍是.【二層練綜合】一、單選題1.(2013·陜西·高考真題)設[x]表示不大于x的最大整數(shù),則對任意實數(shù)x,y,有A.[-x]=-[x] B.[2x]=2[x]C.[x+y]≤[x]+[y] D.[x-y]≤[x]-[y]2.(2022秋·重慶沙坪壩·高三重慶市鳳鳴山中學??计谥校┮阎x域為SKIPIF1<0的偶函數(shù)SKIPIF1<0滿足SKIPIF1<0,且當SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.1 D.33.(2023·全國·高三專題練習)已知函數(shù)SKIPIF1<0,其中a,b,c為常數(shù),若SKIPIF1<0,則c=(
)A.-1 B.0 C.1 D.24.(2022·四川綿陽·鹽亭中學??寄M預測)已知函數(shù)SKIPIF1<0的定義域是SKIPIF1<0,則SKIPIF1<0的定義域是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<05.(2008·江西·高考真題)若函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,則函數(shù)SKIPIF1<0的定義域是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<06.(2018·浙江杭州·杭州高級中學校考模擬預測)已知函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,則函數(shù)SKIPIF1<0的定義域是A.SKIPIF1<0 B.SKIPIF1<0C.R D.SKIPIF1<07.(2022·全國·高一專題練習)已知函數(shù)SKIPIF1<0的定義域與值域均為SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.18.(2020秋·遼寧沈陽·高一東北育才學校??茧A段練習)已知函數(shù)SKIPIF1<0則函數(shù)SKIPIF1<0的值域為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<09.(2010·江西·高考真題)給出下列三個命題:①函數(shù)SKIPIF1<0與SKIPIF1<0是同一函數(shù);②若函數(shù)SKIPIF1<0與SKIPIF1<0的圖像關于直線SKIPIF1<0對稱,則函數(shù)SKIPIF1<0與SKIPIF1<0的圖像也關于直線SKIPIF1<0對稱;③若奇函數(shù)SKIPIF1<0對定義域內(nèi)任意SKIPIF1<0都有SKIPIF1<0,則SKIPIF1<0為周期函數(shù).其中真命題是(
)A.①② B.①③ C.②③ D.②10.(2021秋·甘肅蘭州·高一西北師大附中??计谥校┮阎瘮?shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<011.(2015·全國·高考真題)設函數(shù)SKIPIF1<0,SKIPIF1<0A.3 B.6 C.9 D.1212.(2022秋·四川眉山·高三??奸_學考試)若函數(shù)SKIPIF1<0在R上單調(diào)遞增,則實數(shù)a的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<013.(2018·全國·高考真題)設函數(shù)SKIPIF1<0,則滿足SKIPIF1<0的x的取值范圍是A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<014.(2019·天津·高考真題)已知函數(shù)SKIPIF1<0若關于SKIPIF1<0的方程SKIPIF1<0恰有兩個互異的實數(shù)解,則SKIPIF1<0的取值范圍為A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<015.(2023·全國·高三專題練習)已知SKIPIF1<0,滿足SKIPIF1<0,則SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<016.(2023·全國·高三專題練習)已知SKIPIF1<0,則當SKIPIF1<0時,SKIPIF1<0與SKIPIF1<0的大小關系是(
)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.不確定17.(2023·北京·高三專題練習)若函數(shù)SKIPIF1<0的定義域和值域的交集為空集,則正數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0二、多選題18.(2023·重慶·統(tǒng)考模擬預測)已知函數(shù)SKIPIF1<0,則下列說法正確的是(
)A.SKIPIF1<0的定義域為SKIPIF1<0B.SKIPIF1<0在SKIPIF1<0上的值域為SKIPIF1<0C.若SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,則SKIPIF1<0D.若SKIPIF1<0,則SKIPIF1<0在定義域上單調(diào)遞增19.(2022秋·河北唐山·高三唐山市第十一中學校考階段練習)已知SKIPIF1<0表示不超過SKIPIF1<0的最大整數(shù),例如SKIPIF1<0,SKIPIF1<0等,定義SKIPIF1<0,則下列結(jié)論正確的有(
)A.SKIPIF1<0,SKIPIF1<0B.不等式SKIPIF1<0的解集為SKIPIF1<0C.SKIPIF1<0的值域為SKIPIF1<0D.SKIPIF1<0是周期函數(shù)20.(2022秋·河南鄭州·高一校聯(lián)考期中)已知一次函數(shù)SKIPIF1<0滿足SKIPIF1<0,且點SKIPIF1<0在SKIPIF1<0的圖象上,其中SKIPIF1<0,SKIPIF1<0,則下列各式正確的是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<021.(2023·全國·高三專題練習)SKIPIF1<0是定義在SKIPIF1<0上的函數(shù),若SKIPIF1<0是奇函數(shù),SKIPIF1<0是偶函數(shù),函數(shù)SKIPIF1<0,則(
)A.當SKIPIF1<0時,SKIPIF1<0 B.當SKIPIF1<0時,SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<022.(2023·湖南常德·常德市一中??寄M預測)已知函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,則(
)A.SKIPIF1<0B.函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0單調(diào)遞增C.函數(shù)SKIPIF1<0是奇函數(shù)D.函數(shù)SKIPIF1<0的一個解析式為SKIPIF1<0三、填空題23.(2022·上海浦東新·華師大二附中??寄M預測)已知SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),當SKIPIF1<0時,SKIPIF1<0,函數(shù)SKIPIF1<0,如果對于任意的SKIPIF1<0,總存在SKIPIF1<0,使得SKIPIF1<0,則實數(shù)SKIPIF1<0的取值范圍是.24.(2023·全國·高三專題練習)若函數(shù)SKIPIF1<0的值域為SKIPIF1<0,則實數(shù)SKIPIF1<0的一個取值可以為.25.(2011·上?!じ呖颊骖})設SKIPIF1<0是定義在SKIPIF1<0上、以1為周期的函數(shù),若SKIPIF1<0在SKIPIF1<0上的值域為SKIPIF1<0,則SKIPIF1<0在區(qū)間SKIPIF1<0上的值域為.26.(2020秋·上海浦東新·高一上海市實驗學校校考期末)已知函數(shù)SKIPIF1<0滿足:(1)對任意SKIPIF1<0,恒有SKIPIF1<0成立;(2)當SKIPIF1<0時,SKIPIF1<0.若SKIPIF1<0,則滿足條件的最小的正實數(shù)SKIPIF1<0是27.(2021秋·甘肅蘭州·高三蘭州一中階段練習)已知函數(shù)SKIPIF1<0對SKIPIF1<0均有SKIPIF1<0,若SKIPIF1<0恒成立,則實數(shù)m的取值范圍是.28.(2020·河南信陽·??寄M預測)如圖放置的邊長為1的正方形SKIPIF1<0沿SKIPIF1<0軸滾動,點SKIPIF1<0恰好經(jīng)過原點.設頂點SKIPIF1<0的軌跡方程是SKIPIF1<0,則對函數(shù)SKIPIF1<0有下列判斷:①函數(shù)SKIPIF1<0是偶函數(shù);②對任意的SKIPIF1<0,都有SKIPIF1<0;③函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減;④函數(shù)SKIPIF1<0的值域是SKIPIF1<0;⑤SKIPIF1<0.其中判斷正確的序號是.29.(2023春·高一統(tǒng)考階段練習)設函數(shù)SKIPIF1<0=SKIPIF1<0,若函數(shù)SKIPIF1<0f(x)-a有兩個不同的零點,則實數(shù)a的取值范圍是.30.(2022·河南南陽·南陽中學校考模擬預測)設SKIPIF1<0表示p,q,r三者中最小的一個.若函數(shù)SKIPIF1<0,則當SKIPIF1<0時,SKIPIF1<0的值域是.【三層練能力】一、單選題1.(2023·全國·高三專題練習)已知函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的導函數(shù),且SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0為偶函數(shù),則下列結(jié)論不一定成立的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<02.(2022秋·福建龍巖·高一上杭一中??计谀┮阎瘮?shù)SKIPIF1<0的值域為SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0或SKIPIF1<0 D.SKIPIF1<0或SKIPIF1<03.(2023·江西吉安·吉安三中??家荒#┮阎瘮?shù)SKIPIF1<0是定義在R上的函數(shù),其中SKIPIF1<0是奇函數(shù),SKIPIF1<0是偶函數(shù),且SKIPIF1<0,若對于任意SKIPIF1<0,都有SKIPIF1<0,則實數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<04.(2021秋·湖北·高一校聯(lián)考階段練習)對函數(shù)SKIPIF1<0,如果存在SKIPIF1<0使得SKIPIF1<0,則稱SKIPIF1<0與SKIPIF1<0為函數(shù)圖像的一組奇對稱點.若SKIPIF1<0(SKIPIF1<0為自然數(shù)的底數(shù))存在奇對稱點,則實數(shù)SKIPIF1<0的取值范圍是A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0二、多選題5.(2023·湖南益陽·安化縣第二中學??既#┮阎瘮?shù)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則下列結(jié)論正確的是(
)A.SKIPIF1<0在SKIPIF1<0上單調(diào)遞增B.當SKIPIF1<0時,方程SKIPIF1<0有且只有3個不同實根C.SKIPIF1<0的值域為SKIPIF1<0D.若對于任意的SKIPIF1<0,都有SKIPIF1<0成立,則SKIPIF1<06.(2023·云南昆明·昆明市第三中學??寄M預測)函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,若存在閉區(qū)間SKIPIF1<0,使得函數(shù)SKIPIF1<0同時滿足①SKIPIF1<0在SKIPIF1<0上是單調(diào)函數(shù);②SKIPIF1<0在SKIPIF1<0上的值域為SKIPIF1<0,則稱區(qū)間SKIPIF1<0為SKIPIF1<0的“SKIPIF1<0倍值區(qū)間”.下列函數(shù)存在“3倍值區(qū)間”的有(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【一層練基礎】參考答案1.D【分析】根據(jù)函數(shù)的定義一一判斷各選項中函數(shù)是否符合,即可判斷出答案.【詳解】對于A,當SKIPIF1<0時,SKIPIF1<0;當SKIPIF1<0時,SKIPIF1<0,不符合函數(shù)定義,A錯誤;對于B,令SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,不符合函數(shù)定義,B錯誤;對于C,令SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,不符合函數(shù)定義,C錯誤;對于D,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,則存在SKIPIF1<0時,SKIPIF1<0,符合函數(shù)定義,即存在函數(shù)SKIPIF1<0滿足:對任意SKIPIF1<0都有SKIPIF1<0,D正確,故選:D2.B【分析】首先,考查對數(shù)的定義域問題,也就是SKIPIF1<0的真數(shù)SKIPIF1<0一定要大于零,其次,分母不能是零.【詳解】解:由SKIPIF1<0,得SKIPIF1<0,又因為SKIPIF1<0,即SKIPIF1<0,得SKIPIF1<0故,SKIPIF1<0的取值范圍是SKIPIF1<0,且SKIPIF1<0.定義域就是SKIPIF1<0故選:B.3.B【分析】首先根據(jù)題意得到SKIPIF1<0,再結(jié)合二次函數(shù)的性質(zhì)依次判斷選項即可.【詳解】因為SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.所以SKIPIF1<0,所以SKIPIF1<0的最小值SKIPIF1<0,無最大值,為故A,C錯誤.對選項B,SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,故B正確.對選項D,SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,故D錯誤.故選:B4.A【解析】根據(jù)條件求出兩個函數(shù)的值域,結(jié)合若存在SKIPIF1<0,使得f(x1)=g(x2),等價為兩個集合有公共元素,然后根據(jù)集合關系進行求解即可.【詳解】當SKIPIF1<0x≤2時,log2SKIPIF1<0f(x)≤log22,即﹣1≤f(x)≤1,則f(x)的值域為[﹣1,1],當SKIPIF1<0x≤2時,2SKIPIF1<0a≤g(x)≤4+a,即1+a≤g(x)≤4+a,則g(x)的值域為[1+a,4+a],若存在SKIPIF1<0,使得f(x1)=g(x2),則[1+a,4+a]∩[﹣1,1]≠?,若[1+a,4+a]∩[﹣1,1]=?,則1+a>1或4+a<﹣1,得a>0或a<﹣5,則當[1+a,4+a]∩[﹣1,1]≠?時,﹣5≤a≤0,即實數(shù)a的取值范圍是[﹣5,0],故選A.【點睛】本題主要考查函數(shù)與方程的應用,根據(jù)條件求出兩個函數(shù)的值域,結(jié)合集合元素關系進行求解是解決本題的關鍵.5.D【分析】先設出函數(shù)解析式,利用SKIPIF1<0恒成立,求出解析式,然后可得SKIPIF1<0.【詳解】設SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0因為SKIPIF1<0恒成立,所以SKIPIF1<0且SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,即有SKIPIF1<0.故選:D.【點睛】本題主要考查函數(shù)解析式的求解,明確函數(shù)類型時,常用待定系數(shù)法求解函數(shù)解析式,側(cè)重考查數(shù)學抽象的核心素養(yǎng).6.A【分析】設SKIPIF1<0,則SKIPIF1<0,即可由SKIPIF1<0得SKIPIF1<0,解出SKIPIF1<0,從而得到SKIPIF1<0,進而求出SKIPIF1<0的值.【詳解】根據(jù)題意,函數(shù)SKIPIF1<0在定義域SKIPIF1<0上單調(diào),且均有SKIPIF1<0,則SKIPIF1<0為常數(shù),設SKIPIF1<0,則SKIPIF1<0,則有SKIPIF1<0,解可得SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0;故選:A.7.A【分析】根據(jù)同一函數(shù)的定義,逐項驗證定義域和對應法則是否相同,即得.【詳解】對于A中,函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,定義域相同,對應法則相同,所以是同一個函數(shù);對于B中,函數(shù)SKIPIF1<0和SKIPIF1<0的定義域都是SKIPIF1<0,但對應法則不同,所以不是同一個函數(shù);對于C中,函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,定義域不相同,所以不是同一個函數(shù);對于D中,函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,SKIPIF1<0的定義域為SKIPIF1<0,定義域不相同,所以不是同一個函數(shù).故選:A.8.B【分析】分段求解:分別把0≤x≤1及1≤x≤2時的解析式求出即可.【詳解】當0≤x≤1時,設f(x)=kx,由圖象過點(1,SKIPIF1<0),得k=SKIPIF1<0,所以此時f(x)=SKIPIF1<0x;當1≤x≤2時,設f(x)=mx+n,由圖象過點(1,SKIPIF1<0),(2,0),得SKIPIF1<0,解得SKIPIF1<0所以此時f(x)=SKIPIF1<0.函數(shù)表達式可轉(zhuǎn)化為:y=SKIPIF1<0SKIPIF1<0|x-1|(0≤x≤2)故答案為B【點睛】本題考查函數(shù)解析式的求解問題,本題根據(jù)圖象可知該函數(shù)為分段函數(shù),分兩段用待定系數(shù)法求得.9.A【分析】由表格對應關系,依次求解SKIPIF1<0,發(fā)現(xiàn)周期特點,再并項求和.【詳解】SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,數(shù)列SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0.故選:A.【點睛】周期數(shù)列的求和一般可以從并項求和或分組求和的兩種思路出發(fā):并項是指先每個周期進行求和,再計算多個周期的和,注意剩余項的處理;分組是指先將相等的項組合在一起求和,然后再整體求和.10.D【詳解】SKIPIF1<0,SKIPIF1<0,故選D.11.A【分析】先由SKIPIF1<0,求出函數(shù)SKIPIF1<0的值域,再由存在實數(shù)SKIPIF1<0,使得SKIPIF1<0成立,只需SKIPIF1<0即可,進而可求出結(jié)果.【詳解】因為SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0單調(diào)遞增,故SKIPIF1<0;當SKIPIF1<0時,SKIPIF1<0,當且僅當SKIPIF1<0,即SKIPIF1<0時,取等號;綜上可得,SKIPIF1<0;又因為存在實數(shù)SKIPIF1<0,使得SKIPIF1<0成立,所以只需SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0.故選A【點睛】本題主要考查分段函數(shù)的值域,存在實數(shù)SKIPIF1<0,使得SKIPIF1<0成立,轉(zhuǎn)化為SKIPIF1<0是解題的關鍵,屬于??碱}型.12.B【分析】分別畫出分段函數(shù)對應的兩個函數(shù)圖象,再對實數(shù)SKIPIF1<0的取值進行分類討論即可.【詳解】根據(jù)題意可得,在同一坐標系下分別畫出函數(shù)SKIPIF1<0和SKIPIF1<0的圖象如下圖所示:由圖可知,當SKIPIF1<0或SKIPIF1<0時,兩圖象相交,若SKIPIF1<0的值域是SKIPIF1<0,以實數(shù)SKIPIF1<0為分界點,可進行如下分類討論:當SKIPIF1<0時,顯然兩圖象之間不連續(xù),即值域不為SKIPIF1<0;同理當SKIPIF1<0,值域也不是SKIPIF1<0;當SKIPIF1<0時,兩圖象相接或者有重合的部分,此時值域是SKIPIF1<0;綜上可知,實數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.故選:B13.D【分析】直接由兩段函數(shù)分別為減函數(shù)以及端點值的大小關系解不等式組即可.【詳解】由函數(shù)是(-∞,+∞)上的減函數(shù)可得SKIPIF1<0解得SKIPIF1<0.故選:D.14.C【解析】先求得SKIPIF1<0時SKIPIF1<0的值域,再根據(jù)題意,當SKIPIF1<0時,SKIPIF1<0值域最小需滿足SKIPIF1<0,分析整理,即可得結(jié)果.【詳解】當SKIPIF1<0,SKIPIF1<0,所以當SKIPIF1<0時,SKIPIF1<0,因為SKIPIF1<0的值域為R,所以當SKIPIF1<0時,SKIPIF1<0值域最小需滿足SKIPIF1<0所以SKIPIF1<0,解得SKIPIF1<0,故選:C【點睛】本題考查已知函數(shù)值域求參數(shù)問題,解題要點在于,根據(jù)SKIPIF1<0時SKIPIF1<0的值域,可得SKIPIF1<0時SKIPIF1<0的值域,結(jié)合一次函數(shù)的圖像與性質(zhì),即可求得結(jié)果,考查分析理解,計算求值的能力,屬基礎題.15.ABD【分析】根據(jù)函數(shù)解析式,求出選項對應的函數(shù)值,結(jié)合等差數(shù)列的等差中項和等比數(shù)列的等比中項的應用依次判斷選項即可.【詳解】A:SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,由等差中項的應用知,SKIPIF1<0成等差數(shù)列,所以A正確;B:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,由等差中項的應用知,SKIPIF1<0成等差數(shù)列,所以B正確;C:SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等差數(shù)列,又SKIPIF1<0,所以C錯誤;D:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,由等比中項的應用知,SKIPIF1<0成等比數(shù)列,所以D正確.故選:ABD.16.ABC【分析】A選項,單調(diào)區(qū)間不能用SKIPIF1<0號連接,即在定義域SKIPIF1<0不是單調(diào)遞減函數(shù),A錯誤;B選項,可舉出反例;C選項,分段函數(shù)單調(diào)遞增,則在每段上函數(shù)均單調(diào)遞增,且在端點處,左邊函數(shù)值小于等于右邊函數(shù)的值;D選項,利用抽象函數(shù)求定義域的方法進行求解.【詳解】函數(shù)SKIPIF1<0在SKIPIF1<0和SKIPIF1<0上都是減函數(shù),但在定義域SKIPIF1<0上不是減函數(shù),故A不正確;當SKIPIF1<0是奇函數(shù)時,SKIPIF1<0可能無意義,比如SKIPIF1<0,故B不正確;因為SKIPIF1<0是增函數(shù),所以SKIPIF1<0,解得SKIPIF1<0,故C不正確;因為SKIPIF1<0的定義域為SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0的定義域為SKIPIF1<0,故D正確.故選:ABC.17.BCD【分析】將函數(shù)轉(zhuǎn)化為SKIPIF1<0,再逐項判斷.【詳解】函數(shù)SKIPIF1<0,A.SKIPIF1<0的值域為SKIPIF1<0,故錯誤;B.SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,故正確;C.SKIPIF1<0,故正確;D.因為SKIPIF1<0,則SKIPIF1<0的最小值為SKIPIF1<0,故正確;故選:BCD18.ABC【分析】令SKIPIF1<0可得SKIPIF1<0,令SKIPIF1<0可得SKIPIF1<0.當SKIPIF1<0時,SKIPIF1<0,根據(jù)已知條件得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0.【詳解】對任意SKIPIF1<0,恒有SKIPIF1<0,令SKIPIF1<0可得SKIPIF1<0,因為當SKIPIF1<0時,SKIPIF1<0故SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0可得SKIPIF1<0,所以SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,根據(jù)已知條件得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0.故選:ABC.19.ACD【分析】由SKIPIF1<0,分別代入求SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.【詳解】因為SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.故選:ACD.20.AC【分析】根據(jù)奇函數(shù)和偶函數(shù)定義可構(gòu)造方程組求得SKIPIF1<0,由此依次判斷各個選項即可.【詳解】由SKIPIF1<0得:SKIPIF1<0,又SKIPIF1<0分別是定義在SKIPIF1<0上的奇函數(shù)和偶函數(shù),SKIPIF1<0;由SKIPIF1<0得:SKIPIF1<0,SKIPIF1<0;對于A,SKIPIF1<0,A正確;對于B,SKIPIF1<0,B錯誤;對于CD,SKIPIF1<0,C正確,D錯誤.故選:AC.21.BC【分析】根據(jù)函數(shù)解析式,分別解AB選項對應的方程,即可判定A錯,B正確;求出SKIPIF1<0的解析式,判定SKIPIF1<0與SKIPIF1<0的單調(diào)區(qū)間與單調(diào)性,即可得出C正確;利用特殊值法,即可判斷D錯.【詳解】因為SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,由SKIPIF1<0可得SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,顯然都不滿足SKIPIF1<0,故A錯;當SKIPIF1<0時,SKIPIF1<0,由SKIPIF1<0可得SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,顯然SKIPIF1<0滿足SKIPIF1<0,故B正確;當SKIPIF1<0時,SKIPIF1<0顯然單調(diào)遞減,即SKIPIF1<0的減區(qū)間為SKIPIF1<0;當SKIPIF1<0時,SKIPIF1<0顯然單調(diào)遞增,即SKIPIF1<0的增區(qū)間為SKIPIF1<0;又SKIPIF1<0,因此SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增;即函數(shù)SKIPIF1<0與SKIPIF1<0的單調(diào)區(qū)間和單調(diào)性相同,故C正確;D選項,若不妨令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,此時SKIPIF1<0,故D錯;故選:BC.【點睛】關鍵點點睛:求解本題的關鍵在于根據(jù)解析式判定分段函數(shù)的性質(zhì),利用分段函數(shù)的性質(zhì),結(jié)合選項即可得解.22.BCD【分析】分別求得SKIPIF1<0和SKIPIF1<0時的最小值,結(jié)合題意,即可得答案.【詳解】當SKIPIF1<0,SKIPIF1<0,當且僅當SKIPIF1<0時,等號成立,當SKIPIF1<0時,SKIPIF1<0為二次函數(shù),要想在SKIPIF1<0處取最小,則對稱軸要滿足SKIPIF1<0,且SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,故選:BCD.【點睛】本題考查分段函數(shù)的應用,考查分析理解,求值化簡的能力,考查分類討論的思想,屬中檔題.23.SKIPIF1<0【分析】由題可得SKIPIF1<0或SKIPIF1<0,然后根據(jù)SKIPIF1<0的定義即得.【詳解】由SKIPIF1<0,可得SKIPIF1<0或SKIPIF1<0,所以SKIPIF1<0或SKIPIF1<0.故答案為:SKIPIF1<0.24.SKIPIF1<0【分析】先求出函數(shù)SKIPIF1<0的定義域,進而求出SKIPIF1<0的定義域,求出SKIPIF1<0的解析式,即可得出結(jié)論.【詳解】SKIPIF1<0,定義域均為SKIPIF1<0,SKIPIF1<0,定義域為SKIPIF1<0,SKIPIF1<0的定義域為SKIPIF1<0,SKIPIF1<0.故答案為:SKIPIF1<0【點睛】本題考查函數(shù)解析式的求解,根據(jù)已知先確定函數(shù)的定義域是解題的關鍵,容易被忽略,屬于基礎題.25.SKIPIF1<0【分析】根據(jù)函數(shù)的定義域,結(jié)合函數(shù)的單調(diào)性求解即可.【詳解】函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的減函數(shù),且SKIPIF1<0,∴SKIPIF1<0,解得SKIPIF1<0.故答案為:SKIPIF1<026.SKIPIF1<0(答案不唯一)【分析】取SKIPIF1<0,驗證定義域,導數(shù),值域即可.【詳解】取SKIPIF1<0,因為SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0的定義城為SKIPIF1<0,符合①;SKIPIF1<0,符合②;因為SKIPIF1<0,所以SKIPIF1<0的值域為SKIPIF1<0,符合③.故答案為:SKIPIF1<0(答案不唯一)27.SKIPIF1<0(答案不唯一)【分析】利用導數(shù)求出函數(shù)的單調(diào)性,再求出SKIPIF1<0時所對應的自變量,即可求解.【詳解】SKIPIF1<0,令SKIPIF1<0可得SKIPIF1<0,所以當SKIPIF1<0或SKIPIF1<0時,SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0和SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,且SKIPIF1<0,由此可知定義域可以是SKIPIF1<0,故答案為:SKIPIF1<0(答案不唯一)28.SKIPIF1<0【分析】因為SKIPIF1<0恒成立,所以SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,驗證SKIPIF1<0和SKIPIF1<0,即可得出SKIPIF1<0的值.【詳解】因為SKIPIF1<0恒成立,所以SKIPIF1<0即SKIPIF1<0,解得:SKIPIF1<0或SKIPIF1<0當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0不滿足條件當SKIPI
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 體積與容積(說課稿)-2023-2024學年五年級下冊數(shù)學北師大版
- 二零二五年度國際外派員工勞動合同與解約規(guī)定2篇
- 2025年度生態(tài)濕地污水處理技術研發(fā)與應用合同3篇
- 二零二五年度★虛擬現(xiàn)實(VR)軟件開發(fā)合同范本
- 2024年綠色建筑暖氣管線施工合同
- 二零二五年度城市景觀帶草花苗木種植合作協(xié)議3篇
- 軟基換填專項方案
- 2025年湖南省建筑安全員C證考試(專職安全員)題庫及答案
- 2024年期房屋安置選購合同樣本版B版
- 二零二五年度辦公室文員勞動合同模板設計與要點解析2篇
- 《XL集團破產(chǎn)重整方案設計》
- 智慧金融合同施工承諾書
- 術后甲狀旁腺功能減退癥管理專家共識
- 【7道期末】安徽省安慶市區(qū)2023-2024學年七年級上學期期末道德與法治試題(含解析)
- 2024年01月22094法理學期末試題答案
- 2024年1月國家開放大學法律事務??啤睹穹▽W(1)》期末紙質(zhì)考試試題及答案
- 學校2024-2025學年教研工作計劃
- 煙草執(zhí)法課件教學課件
- 2024年安全文化建設實施方案
- 康復治療技術歷年真題單選題100道及答案
- 數(shù)字化交付施工方案
評論
0/150
提交評論