2025屆河北省撫寧一中高三第二次聯(lián)考數(shù)學試卷含解析_第1頁
2025屆河北省撫寧一中高三第二次聯(lián)考數(shù)學試卷含解析_第2頁
2025屆河北省撫寧一中高三第二次聯(lián)考數(shù)學試卷含解析_第3頁
2025屆河北省撫寧一中高三第二次聯(lián)考數(shù)學試卷含解析_第4頁
2025屆河北省撫寧一中高三第二次聯(lián)考數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆河北省撫寧一中高三第二次聯(lián)考數(shù)學試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.等差數(shù)列中,,,則數(shù)列前6項和為()A.18 B.24 C.36 D.722.設復數(shù)滿足(為虛數(shù)單位),則復數(shù)的共軛復數(shù)在復平面內對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.復數(shù)的共軛復數(shù)記作,已知復數(shù)對應復平面上的點,復數(shù):滿足.則等于()A. B. C. D.4.我國數(shù)學家陳景潤在哥德巴赫猜想的研究中取得了世界領先的成果.哥德巴赫猜想是“每個大于2的偶數(shù)可以表示為兩個素數(shù)(即質數(shù))的和”,如,.在不超過20的素數(shù)中,隨機選取兩個不同的數(shù),其和等于20的概率是()A. B. C. D.以上都不對5.已知復數(shù)滿足,則的值為()A. B. C. D.26.設,點,,,,設對一切都有不等式成立,則正整數(shù)的最小值為()A. B. C. D.7.一個超級斐波那契數(shù)列是一列具有以下性質的正整數(shù):從第三項起,每一項都等于前面所有項之和(例如:1,3,4,8,16…).則首項為2,某一項為2020的超級斐波那契數(shù)列的個數(shù)為()A.3 B.4 C.5 D.68.已知數(shù)列為等差數(shù)列,為其前項和,,則()A.7 B.14 C.28 D.849.定義在R上的偶函數(shù)滿足,且在區(qū)間上單調遞減,已知是銳角三角形的兩個內角,則的大小關系是()A. B.C. D.以上情況均有可能10.學業(yè)水平測試成績按照考生原始成績從高到低分為、、、、五個等級.某班共有名學生且全部選考物理、化學兩科,這兩科的學業(yè)水平測試成績如圖所示.該班學生中,這兩科等級均為的學生有人,這兩科中僅有一科等級為的學生,其另外一科等級為,則該班()A.物理化學等級都是的學生至多有人B.物理化學等級都是的學生至少有人C.這兩科只有一科等級為且最高等級為的學生至多有人D.這兩科只有一科等級為且最高等級為的學生至少有人11.已知雙曲線C:=1(a>0,b>0)的右焦點為F,過原點O作斜率為的直線交C的右支于點A,若|OA|=|OF|,則雙曲線的離心率為()A. B. C.2 D.+112.在正項等比數(shù)列{an}中,a5-a1=15,a4-a2=6,則a3=()A.2 B.4 C. D.8二、填空題:本題共4小題,每小題5分,共20分。13.一個房間的地面是由12個正方形所組成,如圖所示.今想用長方形瓷磚鋪滿地面,已知每一塊長方形瓷磚可以覆蓋兩塊相鄰的正方形,即或,則用6塊瓷磚鋪滿房間地面的方法有_______種.14.已知一個四面體的每個頂點都在表面積為的球的表面上,且,,則__________.15.二項式的展開式的各項系數(shù)之和為_____,含項的系數(shù)為_____.16.已知函數(shù)為奇函數(shù),則______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知各項均為正數(shù)的數(shù)列的前項和為,且,(,且)(1)求數(shù)列的通項公式;(2)證明:當時,18.(12分)第十四屆全國冬季運動會召開期間,某校舉行了“冰上運動知識競賽”,為了解本次競賽成績情況,從中隨機抽取部分學生的成績(得分均為整數(shù),滿分100分)進行統(tǒng)計,請根據(jù)頻率分布表中所提供的數(shù)據(jù),解答下列問題:(1)求、、的值及隨機抽取一考生其成績不低于70分的概率;(2)若從成績較好的3、4、5組中按分層抽樣的方法抽取5人參加“普及冰雪知識”志愿活動,并指定2名負責人,求從第4組抽取的學生中至少有一名是負責人的概率.組號分組頻數(shù)頻率第1組150.15第2組350.35第3組b0.20第4組20第5組100.1合計1.0019.(12分)設函數(shù)()的最小值為.(1)求的值;(2)若,,為正實數(shù),且,證明:.20.(12分)已知,,不等式恒成立.(1)求證:(2)求證:.21.(12分)如圖,直三棱柱中,底面為等腰直角三角形,,,,分別為,的中點,為棱上一點,若平面.(1)求線段的長;(2)求二面角的余弦值.22.(10分)已知函數(shù).(1)解不等式;(2)若,,,求證:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

由等差數(shù)列的性質可得,根據(jù)等差數(shù)列的前項和公式可得結果.【詳解】∵等差數(shù)列中,,∴,即,∴,故選C.【點睛】本題主要考查了等差數(shù)列的性質以及等差數(shù)列的前項和公式的應用,屬于基礎題.2、D【解析】

先把變形為,然后利用復數(shù)代數(shù)形式的乘除運算化簡,求出,得到其坐標可得答案.【詳解】解:由,得,所以,其在復平面內對應的點為,在第四象限故選:D【點睛】此題考查了復數(shù)代數(shù)形式的乘除運算,考查了復數(shù)的代數(shù)表示法及其幾何意義,屬于基礎題.3、A【解析】

根據(jù)復數(shù)的幾何意義得出復數(shù),進而得出,由得出可計算出,由此可計算出.【詳解】由于復數(shù)對應復平面上的點,,則,,,因此,.故選:A.【點睛】本題考查復數(shù)模的計算,考查了復數(shù)的坐標表示、共軛復數(shù)以及復數(shù)的除法,考查計算能力,屬于基礎題.4、A【解析】

首先確定不超過的素數(shù)的個數(shù),根據(jù)古典概型概率求解方法計算可得結果.【詳解】不超過的素數(shù)有,,,,,,,,共個,從這個素數(shù)中任選個,有種可能;其中選取的兩個數(shù),其和等于的有,,共種情況,故隨機選出兩個不同的數(shù),其和等于的概率.故選:.【點睛】本題考查古典概型概率問題的求解,屬于基礎題.5、C【解析】

由復數(shù)的除法運算整理已知求得復數(shù)z,進而求得其模.【詳解】因為,所以故選:C【點睛】本題考查復數(shù)的除法運算與求復數(shù)的模,屬于基礎題.6、A【解析】

先求得,再求得左邊的范圍,只需,利用單調性解得t的范圍.【詳解】由題意知sin,∴,∴,隨n的增大而增大,∴,∴,即,又f(t)=在t上單增,f(2)=-1<0,f(3)=2>0,∴正整數(shù)的最小值為3.【點睛】本題考查了數(shù)列的通項及求和問題,考查了數(shù)列的單調性及不等式的解法,考查了轉化思想,屬于中檔題.7、A【解析】

根據(jù)定義,表示出數(shù)列的通項并等于2020.結合的正整數(shù)性質即可確定解的個數(shù).【詳解】由題意可知首項為2,設第二項為,則第三項為,第四項為,第五項為第n項為且,則,因為,當?shù)闹悼梢詾椋患从?個這種超級斐波那契數(shù)列,故選:A.【點睛】本題考查了數(shù)列新定義的應用,注意自變量的取值范圍,對題意理解要準確,屬于中檔題.8、D【解析】

利用等差數(shù)列的通項公式,可求解得到,利用求和公式和等差中項的性質,即得解【詳解】,解得..故選:D【點睛】本題考查了等差數(shù)列的通項公式、求和公式和等差中項,考查了學生綜合分析,轉化劃歸,數(shù)學運算的能力,屬于中檔題.9、B【解析】

由已知可求得函數(shù)的周期,根據(jù)周期及偶函數(shù)的對稱性可求在上的單調性,結合三角函數(shù)的性質即可比較.【詳解】由可得,即函數(shù)的周期,因為在區(qū)間上單調遞減,故函數(shù)在區(qū)間上單調遞減,根據(jù)偶函數(shù)的對稱性可知,在上單調遞增,因為,是銳角三角形的兩個內角,所以且即,所以即,.故選:.【點睛】本題主要考查函數(shù)值的大小比較,根據(jù)函數(shù)奇偶性和單調性之間的關系是解決本題的關鍵.10、D【解析】

根據(jù)題意分別計算出物理等級為,化學等級為的學生人數(shù)以及物理等級為,化學等級為的學生人數(shù),結合表格中的數(shù)據(jù)進行分析,可得出合適的選項.【詳解】根據(jù)題意可知,名學生減去名全和一科為另一科為的學生人(其中物理化學的有人,物理化學的有人),表格變?yōu)椋何锢砘瘜W對于A選項,物理化學等級都是的學生至多有人,A選項錯誤;對于B選項,當物理和,化學都是時,或化學和,物理都是時,物理、化學都是的人數(shù)最少,至少為(人),B選項錯誤;對于C選項,在表格中,除去物理化學都是的學生,剩下的都是一科為且最高等級為的學生,因為都是的學生最少人,所以一科為且最高等級為的學生最多為(人),C選項錯誤;對于D選項,物理化學都是的最多人,所以兩科只有一科等級為且最高等級為的學生最少(人),D選項正確.故選:D.【點睛】本題考查合情推理,考查推理能力,屬于中等題.11、B【解析】

以為圓心,以為半徑的圓的方程為,聯(lián)立,可求出點,則,整理計算可得離心率.【詳解】解:以為圓心,以為半徑的圓的方程為,聯(lián)立,取第一象限的解得,即,則,整理得,則(舍去),,.故選:B.【點睛】本題考查雙曲線離心率的求解,考查學生的計算能力,是中檔題.12、B【解析】

根據(jù)題意得到,,解得答案.【詳解】,,解得或(舍去).故.故選:.【點睛】本題考查了等比數(shù)列的計算,意在考查學生的計算能力.二、填空題:本題共4小題,每小題5分,共20分。13、11【解析】

將圖形中左側的兩列瓷磚的形狀先確定,再由此進行分類,在每一類里面又分按兩種形狀的瓷磚的數(shù)量進行分類,在其中會有相同元素的排列問題,需用到“縮倍法”.采用分類計數(shù)原理,求得總的方法數(shù).【詳解】(1)先貼如圖這塊瓷磚,然后再貼剩下的部分,按如下分類:5個:,3個,2個:,1個,4個:,(2)左側兩列如圖貼磚,然后貼剩下的部分:3個:,1個,2個:,綜上,一共有(種).故答案為:11.【點睛】本題考查了分類計數(shù)原理,排列問題,其中涉及到相同元素的排列,用到了“縮倍法”的思想.屬于中檔題.14、【解析】由題意可得,該四面體的四個頂點位于一個長方體的四個頂點上,設長方體的長寬高為,由題意可得:,據(jù)此可得:,則球的表面積:,結合解得:.點睛:與球有關的組合體問題,一種是內切,一種是外接.解題時要認真分析圖形,明確切點和接點的位置,確定有關元素間的數(shù)量關系,并作出合適的截面圖,如球內切于正方體,切點為正方體各個面的中心,正方體的棱長等于球的直徑;球外接于正方體,正方體的頂點均在球面上,正方體的體對角線長等于球的直徑.15、【解析】

將代入二項式可得展開式各項系數(shù)之和,寫出二項展開式通項,令的指數(shù)為,求出參數(shù)的值,代入通項即可得出項的系數(shù).【詳解】將代入二項式可得展開式各項系數(shù)和為.二項式的展開式通項為,令,解得,因此,展開式中含項的系數(shù)為.故答案為:;.【點睛】本題考查了二項式定理及二項式展開式通項公式,屬基礎題.16、【解析】

利用奇函數(shù)的定義得出,結合對數(shù)的運算性質可求得實數(shù)的值.【詳解】由于函數(shù)為奇函數(shù),則,即,,整理得,解得.當時,真數(shù),不合乎題意;當時,,解不等式,解得或,此時函數(shù)的定義域為,定義域關于原點對稱,合乎題意.綜上所述,.故答案為:.【點睛】本題考查利用函數(shù)的奇偶性求參數(shù),考查了函數(shù)奇偶性的定義和對數(shù)運算性質的應用,考查計算能力,屬于中等題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)見證明【解析】

(1)由題意將遞推關系式整理為關于與的關系式,求得前n項和然后確定通項公式即可;(2)由題意結合通項公式的特征放縮之后裂項求和即可證得題中的不等式.【詳解】(1)由,得,即,所以數(shù)列是以為首項,以為公差的等差數(shù)列,所以,即,當時,,當時,,也滿足上式,所以;(2)當時,,所以【點睛】給出與的遞推關系,求an,常用思路是:一是利用轉化為an的遞推關系,再求其通項公式;二是轉化為Sn的遞推關系,先求出Sn與n之間的關系,再求an.18、(1),,,;(2)【解析】

(1)根據(jù)第1組的頻數(shù)和頻率求出,根據(jù)頻數(shù)、頻率、的關系分別求出,進而求出不低于70分的概率;(2)由(1)得,根據(jù)分層抽樣原則,分別從抽出2人,2人,1人,并按照所在組對抽出的5人編號,列出所有2名負責人的抽取方法,得出第4組抽取的學生中至少有一名是負責人的抽法數(shù),由古典概型概率公式,即可求解.【詳解】(1),,,由頻率分布表可得成績不低于70分的概率約為:(2)因為第3、4、5組共有50名學生,所以利用分層抽樣在50名學生中抽取5名學生,每組分別為:第3組:人,第4組:人,第5組:人,所以第3、4、5組分別抽取2人,2人,1人設第3組的3位同學為、,第4組的2位同學為、,第5組的1位同學為,則從五位同學中抽兩位同學有10種可能抽法如下:,,,,,,,,,,其中第4組的2位同學、至少有一位同學是負責人有7種抽法,故所求的概率為.【點睛】本題考查補全頻率分布表、古典概型的概率,屬于基礎題.19、(1)(2)證明見解析【解析】

(1)分類討論,去絕對值求出函數(shù)的解析式,根據(jù)一次函數(shù)的性質,得出的單調性,得出取最小值,即可求的值;(2)由(1)得出,利用“乘1法”,令,化簡后利用基本不等式求出的最小值,即可證出.【詳解】(1)解:當時,單調遞減;當時,單調遞增.所以當時,取最小值.(2)證明:由(1)可知.要證明:,即證,因為,,為正實數(shù),所以.當且僅當,即,,時取等號,所以.【點睛】本題考查絕對值不等式和基本不等式的應用,還運用“乘1法”和分類討論思想,屬于中檔題.20、(1)證明見解析(2)證明見解析【解析】

(1)先根據(jù)絕對值不等式求得的最大值,從而得到,再利用基本不等式進行證明;(2)利用基本不等式變形得,兩邊開平方得到新的不等式,利用同

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論