2025屆福建省師范大學附中高考考前模擬數(shù)學試題含解析_第1頁
2025屆福建省師范大學附中高考考前模擬數(shù)學試題含解析_第2頁
2025屆福建省師范大學附中高考考前模擬數(shù)學試題含解析_第3頁
2025屆福建省師范大學附中高考考前模擬數(shù)學試題含解析_第4頁
2025屆福建省師范大學附中高考考前模擬數(shù)學試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2025屆福建省師范大學附中高考考前模擬數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,,分別是三個內(nèi)角,,的對邊,,則()A. B. C. D.2.已知為拋物線的焦點,點在拋物線上,且,過點的動直線與拋物線交于兩點,為坐標原點,拋物線的準線與軸的交點為.給出下列四個命題:①在拋物線上滿足條件的點僅有一個;②若是拋物線準線上一動點,則的最小值為;③無論過點的直線在什么位置,總有;④若點在拋物線準線上的射影為,則三點在同一條直線上.其中所有正確命題的個數(shù)為()A.1 B.2 C.3 D.43.命題:的否定為A. B.C. D.4.已知直線y=k(x﹣1)與拋物線C:y2=4x交于A,B兩點,直線y=2k(x﹣2)與拋物線D:y2=8x交于M,N兩點,設λ=|AB|﹣2|MN|,則()A.λ<﹣16 B.λ=﹣16 C.﹣12<λ<0 D.λ=﹣125.設全集集合,則()A. B. C. D.6.函數(shù)(且)的圖象可能為()A. B. C. D.7.已知復數(shù)(為虛數(shù)單位),則下列說法正確的是()A.的虛部為 B.復數(shù)在復平面內(nèi)對應的點位于第三象限C.的共軛復數(shù) D.8.關于函數(shù)在區(qū)間的單調(diào)性,下列敘述正確的是()A.單調(diào)遞增 B.單調(diào)遞減 C.先遞減后遞增 D.先遞增后遞減9.已知平面向量,,,則實數(shù)x的值等于()A.6 B.1 C. D.10.如圖,正三棱柱各條棱的長度均相等,為的中點,分別是線段和線段的動點(含端點),且滿足,當運動時,下列結(jié)論中不正確的是A.在內(nèi)總存在與平面平行的線段B.平面平面C.三棱錐的體積為定值D.可能為直角三角形11.正項等差數(shù)列的前和為,已知,則=()A.35 B.36 C.45 D.5412.已知函數(shù)有兩個不同的極值點,,若不等式有解,則的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)的定義域為__________.14.在《九章算術(shù)》中,將底面為矩形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽馬.如圖,若四棱錐為陽馬,側(cè)棱底面,且,,設該陽馬的外接球半徑為,內(nèi)切球半徑為,則__________.15.安排名男生和名女生參與完成項工作,每人參與一項,每項工作至少由名男生和名女生完成,則不同的安排方式共有________種(用數(shù)字作答).16.觀察下列式子,,,,……,根據(jù)上述規(guī)律,第個不等式應該為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐中,平面平面,若,四邊形是平行四邊形,且.(Ⅰ)求證:;(Ⅱ)若點在線段上,且平面,,,求二面角的余弦值.18.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)若函數(shù)在區(qū)間上的最小值為,求m的值.19.(12分)已知是各項都為正數(shù)的數(shù)列,其前項和為,且為與的等差中項.(1)求證:數(shù)列為等差數(shù)列;(2)設,求的前100項和.20.(12分)已知矩陣的一個特征值為4,求矩陣A的逆矩陣.21.(12分)已知函數(shù)與的圖象關于直線對稱.(為自然對數(shù)的底數(shù))(1)若的圖象在點處的切線經(jīng)過點,求的值;(2)若不等式恒成立,求正整數(shù)的最小值.22.(10分)如圖,為坐標原點,點為拋物線的焦點,且拋物線上點處的切線與圓相切于點(1)當直線的方程為時,求拋物線的方程;(2)當正數(shù)變化時,記分別為的面積,求的最小值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

原式由正弦定理化簡得,由于,可求的值.【詳解】解:由及正弦定理得.因為,所以代入上式化簡得.由于,所以.又,故.故選:C.【點睛】本題主要考查正弦定理解三角形,三角函數(shù)恒等變換等基礎知識;考查運算求解能力,推理論證能力,屬于中檔題.2、C【解析】

①:由拋物線的定義可知,從而可求的坐標;②:做關于準線的對稱點為,通過分析可知當三點共線時取最小值,由兩點間的距離公式,可求此時最小值;③:設出直線方程,聯(lián)立直線與拋物線方程,結(jié)合韋達定理,可知焦點坐標的關系,進而可求,從而可判斷出的關系;④:計算直線的斜率之差,可得兩直線斜率相等,進而可判斷三點在同一條直線上.【詳解】解:對于①,設,由拋物線的方程得,則,故,所以或,所以滿足條件的點有二個,故①不正確;對于②,不妨設,則關于準線的對稱點為,故,當且僅當三點共線時等號成立,故②正確;對于③,由題意知,,且的斜率不為0,則設方程為:,設與拋物線的交點坐標為,聯(lián)立直線與拋物線的方程為,,整理得,則,所以,則.故的傾斜角互補,所以,故③正確.對于④,由題意知,由③知,則,由,知,即三點在同一條直線上,故④正確.故選:C.【點睛】本題考查了拋物線的定義,考查了直線與拋物線的位置關系,考查了拋物線的性質(zhì),考查了直線方程,考查了兩點的斜率公式.本題的難點在于第二個命題,結(jié)合初中的“飲馬問題”分析出何時取最小值.3、C【解析】

命題為全稱命題,它的否定為特稱命題,將全稱量詞改為存在量詞,并將結(jié)論否定,可知命題的否定為,故選C.4、D【解析】

分別聯(lián)立直線與拋物線的方程,利用韋達定理,可得,,然后計算,可得結(jié)果.【詳解】設,聯(lián)立則,因為直線經(jīng)過C的焦點,所以.同理可得,所以故選:D.【點睛】本題考查的是直線與拋物線的交點問題,運用拋物線的焦點弦求參數(shù),屬基礎題。5、A【解析】

先求出,再與集合N求交集.【詳解】由已知,,又,所以.故選:A.【點睛】本題考查集合的基本運算,涉及到補集、交集運算,是一道容易題.6、D【解析】因為,故函數(shù)是奇函數(shù),所以排除A,B;取,則,故選D.考點:1.函數(shù)的基本性質(zhì);2.函數(shù)的圖象.7、D【解析】

利用的周期性先將復數(shù)化簡為即可得到答案.【詳解】因為,,,所以的周期為4,故,故的虛部為2,A錯誤;在復平面內(nèi)對應的點為,在第二象限,B錯誤;的共軛復數(shù)為,C錯誤;,D正確.故選:D.【點睛】本題考查復數(shù)的四則運算,涉及到復數(shù)的虛部、共軛復數(shù)、復數(shù)的幾何意義、復數(shù)的模等知識,是一道基礎題.8、C【解析】

先用誘導公式得,再根據(jù)函數(shù)圖像平移的方法求解即可.【詳解】函數(shù)的圖象可由向左平移個單位得到,如圖所示,在上先遞減后遞增.故選:C【點睛】本題考查三角函數(shù)的平移與單調(diào)性的求解.屬于基礎題.9、A【解析】

根據(jù)向量平行的坐標表示即可求解.【詳解】,,,,即,故選:A【點睛】本題主要考查了向量平行的坐標運算,屬于容易題.10、D【解析】

A項用平行于平面ABC的平面與平面MDN相交,則交線與平面ABC平行;B項利用線面垂直的判定定理;C項三棱錐與三棱錐體積相等,三棱錐的底面積是定值,高也是定值,則體積是定值;D項用反證法說明三角形DMN不可能是直角三角形.【詳解】A項,用平行于平面ABC的平面截平面MND,則交線平行于平面ABC,故正確;B項,如圖:當M、N分別在BB1、CC1上運動時,若滿足BM=CN,則線段MN必過正方形BCC1B1的中心O,由DO垂直于平面BCC1B1可得平面平面,故正確;C項,當M、N分別在BB1、CC1上運動時,△A1DM的面積不變,N到平面A1DM的距離不變,所以棱錐N-A1DM的體積不變,即三棱錐A1-DMN的體積為定值,故正確;D項,若△DMN為直角三角形,則必是以∠MDN為直角的直角三角形,但MN的最大值為BC1,而此時DM,DN的長大于BB1,所以△DMN不可能為直角三角形,故錯誤.故選D【點睛】本題考查了命題真假判斷、棱柱的結(jié)構(gòu)特征、空間想象力和思維能力,意在考查對線面、面面平行、垂直的判定和性質(zhì)的應用,是中檔題.11、C【解析】

由等差數(shù)列通項公式得,求出,再利用等差數(shù)列前項和公式能求出.【詳解】正項等差數(shù)列的前項和,,,解得或(舍),,故選C.【點睛】本題主要考查等差數(shù)列的性質(zhì)與求和公式,屬于中檔題.解等差數(shù)列問題要注意應用等差數(shù)列的性質(zhì)()與前項和的關系.12、C【解析】

先求導得(),由于函數(shù)有兩個不同的極值點,,轉(zhuǎn)化為方程有兩個不相等的正實數(shù)根,根據(jù),,,求出的取值范圍,而有解,通過分裂參數(shù)法和構(gòu)造新函數(shù),通過利用導數(shù)研究單調(diào)性、最值,即可得出的取值范圍.【詳解】由題可得:(),因為函數(shù)有兩個不同的極值點,,所以方程有兩個不相等的正實數(shù)根,于是有解得.若不等式有解,所以因為.設,,故在上單調(diào)遞增,故,所以,所以的取值范圍是.故選:C.【點睛】本題考查利用導數(shù)研究函數(shù)單調(diào)性、最值來求參數(shù)取值范圍,以及運用分離參數(shù)法和構(gòu)造函數(shù)法,還考查分析和計算能力,有一定的難度.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

根據(jù)函數(shù)成立的條件列不等式組,求解即可得定義域.【詳解】解:要使函數(shù)有意義,則,即.則定義域為:.故答案為:【點睛】本題主要考查定義域的求解,要熟練掌握張建函數(shù)成立的條件.14、【解析】

該陽馬補形所得到的長方體的對角線為外接球的直徑,由此能求出,內(nèi)切球在側(cè)面內(nèi)的正視圖是的內(nèi)切圓,從而內(nèi)切球半徑為,由此能求出.【詳解】四棱錐為陽馬,側(cè)棱底面,且,,設該陽馬的外接球半徑為,該陽馬補形所得到的長方體的對角線為外接球的直徑,,,側(cè)棱底面,且底面為正方形,內(nèi)切球在側(cè)面內(nèi)的正視圖是的內(nèi)切圓,內(nèi)切球半徑為,故.故答案為.【點睛】本題考查了幾何體外接球和內(nèi)切球的相關問題,補形法的運用,以及數(shù)學文化,考查了空間想象能力,是中檔題.解決球與其他幾何體的切、接問題,關鍵是能夠確定球心位置,以及選擇恰當?shù)慕嵌茸龀鼋孛?球心位置的確定的方法有很多,主要有兩種:(1)補形法(構(gòu)造法),通過補形為長方體(正方體),球心位置即為體對角線的中點;(2)外心垂線法,先找出幾何體中不共線三點構(gòu)成的三角形的外心,再找出過外心且與不共線三點確定的平面垂直的垂線,則球心一定在垂線上.15、1296【解析】

先從4個男生選2個一組,將4人分成三組,然后從4個女生選2個一組,將4人分成三組,然后全排列即可.【詳解】由于每項工作至少由名男生和名女生完成,則先從4個男生選2個一組,將4人分成三組,所以男生的排法共有,同理女生的排法共有,故不同的安排共有種.故答案為:1296【點睛】本題主要考查了排列組合的應用,考查了學生應用數(shù)學解決實際問題的能力.16、【解析】

根據(jù)題意,依次分析不等式的變化規(guī)律,綜合可得答案.【詳解】解:根據(jù)題意,對于第一個不等式,,則有,對于第二個不等式,,則有,對于第三個不等式,,則有,依此類推:第個不等式為:,故答案為.【點睛】本題考查歸納推理的應用,分析不等式的變化規(guī)律.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)見解析(Ⅱ)【解析】

(Ⅰ)推導出BC⊥CE,從而EC⊥平面ABCD,進而EC⊥BD,再由BD⊥AE,得BD⊥平面AEC,從而BD⊥AC,進而四邊形ABCD是菱形,由此能證明AB=AD.(Ⅱ)設AC與BD的交點為G,推導出EC//FG,取BC的中點為O,連結(jié)OD,則OD⊥BC,以O為坐標原點,以過點O且與CE平行的直線為x軸,以BC為y軸,OD為z軸,建立空間直角坐標系,利用向量法能求出二面角A-BF-D的余弦值.【詳解】(Ⅰ)證明:,即,因為平面平面,所以平面,所以,因為,所以平面,所以,因為四邊形是平行四邊形,所以四邊形是菱形,故;解法一:(Ⅱ)設與的交點為,因為平面,平面平面于,所以,因為是中點,所以是的中點,因為,取的中點為,連接,則,因為平面平面,所以面,以為坐標原點,以過點且與平行的直線為軸,以所在直線為軸,以所在直線為軸建立空間直角坐標系.不妨設,則,,,,,,,設平面的法向量,則,取,同理可得平面的法向量,設平面與平面的夾角為,因為,所以二面角的余弦值為.解法二:(Ⅱ)設與的交點為,因為平面,平面平面于,所以,因為是中點,所以是的中點,因為,,所以平面,所以,取中點,連接、,因為,所以,故平面,所以,即是二面角的平面角,不妨設,因為,,在中,,所以,所以二面角的余弦值為.【點睛】本題考查求空間角中的二面角的余弦值,還考查由空間中線面關系進而證明線線相等,屬于中檔題.18、(1)見解析(2)【解析】

(1)先求導,再對m分類討論,求出的單調(diào)性;(2)對m分三種情況討論求函數(shù)在區(qū)間上的最小值即得解.【詳解】(1)若,當時,;當時.,所以在上單調(diào)遞增,在上單調(diào)遞減若.在R上單調(diào)遞增若,當時,;當時.,所以在上單調(diào)遞增,在上單調(diào)遞減(2)由(1)可知,當時,在上單調(diào)遞增,則.則不合題意當時,在上單調(diào)遞減,在上單調(diào)遞增.則,即又因為單調(diào)遞增,且,故綜上,【點睛】本題主要考查利用導數(shù)研究函數(shù)的單調(diào)性和最值,意在考查學生對這些知識的理解掌握水平.19、(1)證明見解析;(2).【解析】

(1)利用已知條件化簡出,當時,,當時,再利用進行化簡,得出,即可證明出為等差數(shù)列;(2)根據(jù)(1)中,求出數(shù)列的通項公式,再化簡出,可直接求出的前100項和.【詳解】解:(1)由題意知,即,①當時,由①式可得;又時,有,代入①式得,整理得,∴是首項為1,公差為1的等差數(shù)列.(2)由(1)可得,∵是各項都為正數(shù),∴,∴,又,∴,則,,即:.∴的前100項和.【點睛】本題考查數(shù)列遞推關系的應用,通項公式的求法以及裂項相消法求和,考查分析解題能力和計算能力.20、.【解析】

根據(jù)特征多項式可得,可得,進而可得矩陣A的逆矩陣.【詳解】因為矩陣的特征多項式,所以,所以.因為,且,所以.【點睛】本題考查矩陣的特征多項式以及逆矩陣的求解,是基礎題.21、(1)e;(2)2.【解析】

(1)根據(jù)反函數(shù)的性質(zhì),得出,再利用導數(shù)的幾何意義,求出曲線在點處的切線為,構(gòu)造函數(shù),利用導數(shù)求出單調(diào)性,即可得出的值;(2)設,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論