![CFA二級(jí)基礎(chǔ)班-衍生-標(biāo)準(zhǔn)版_第1頁](http://file4.renrendoc.com/view9/M01/2E/33/wKhkGWdQ-z6AF4ZwAAB-P6olvBo354.jpg)
![CFA二級(jí)基礎(chǔ)班-衍生-標(biāo)準(zhǔn)版_第2頁](http://file4.renrendoc.com/view9/M01/2E/33/wKhkGWdQ-z6AF4ZwAAB-P6olvBo3542.jpg)
![CFA二級(jí)基礎(chǔ)班-衍生-標(biāo)準(zhǔn)版_第3頁](http://file4.renrendoc.com/view9/M01/2E/33/wKhkGWdQ-z6AF4ZwAAB-P6olvBo3543.jpg)
![CFA二級(jí)基礎(chǔ)班-衍生-標(biāo)準(zhǔn)版_第4頁](http://file4.renrendoc.com/view9/M01/2E/33/wKhkGWdQ-z6AF4ZwAAB-P6olvBo3544.jpg)
![CFA二級(jí)基礎(chǔ)班-衍生-標(biāo)準(zhǔn)版_第5頁](http://file4.renrendoc.com/view9/M01/2E/33/wKhkGWdQ-z6AF4ZwAAB-P6olvBo3545.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
CFA二級(jí)培訓(xùn)項(xiàng)目
講師:TOM
m魚藝櫛MM6aPr中血嗎
TopicWeightingsinCFALevelII
SessionNO.ContentWeightings
StudySession1Ethical&ProfessionalStandards10-15
StudySession2-3QuantitativeMethods5-10
StudySession4Economics5-10
StudySession5-6FinancialReportingandAnalysis10-15
StudySession7-8CorporateFinance5-10
StudySession9-11Equity10-15
StudySession12-13FixedIncome10-15
StudySession14Derivatives5-10
StudySession15AlternativeInvestments5-10
StudySession16-17PortfolioManagement10-15
行業(yè)?創(chuàng)新?憎值
(S)FrameworkSS14Derivatives
?R37PricingandValuationof
ForwardCommitments
Derivatives?R38ValuationofContingent
Claims
3-148
行業(yè)?創(chuàng)新?憎值
PricingandValuationofForwardCommitments
4-148
行業(yè)?創(chuàng)新?憎值
1.Forward
■PrincipleofArbitrage-freePricing
Framework■EquityForwardandFuturesContracts
■InterestRateForwardandFutures
Contracts(FRA)
■Fixed-IncomeForwardandFuturesContracts
■CurrencyForwardContracts
2.T-bondFutures
3.Swap
■InterestRateSwapContracts
■CurrencySwapContracts
■EquitySw叩Contracts
5-148
專業(yè)?創(chuàng)新?憎值
?ForwardContracts
“Aforwardcontractisanagreementbetweentwopartiesinwhichone
party,thebuyer,agreestobuyfromtheotherparty,theseller;anunderlying
assetorotherderivative,atafuturedateatapriceestablishedatthestartof
thecontract.最新資料領(lǐng)取微信xiiebajun888s
“Longposition:apositioninanassetorcontractinwhichoneownstheasset
orhasanexercisablerightunderthecontract.
jShortposition:apositioninanassetorcontractinwhichonehassoldan
assetordoesnotown,orinwhicharightunderacontractcanbeexercised
againstoneself.
6-148
行業(yè)?創(chuàng)新?憎值
PriceandValue
Thepriceisthepredeterminedpriceinthecontractthatthelongshould
paytotheshorttobuytheunderlyingassetatthesettlementdate.
Thecontractvalueiszerotobothpartiesatinitiation.
Theno-arbitrageprinciple:tradablesecuritieswithidenticalcashflow
paymentsmusthavethesameprice.Otherwise,traderswouldbeableto
generaterisk-freearbitrageprofits.
?Twoassetsorportfolioswithidenticalfuturecashflows,regardlessof
futureevents,shouldhavesameprice;
?Theportfolioshouldyieldtherisk-freerateofreturn,ifitgenerates
certainpayoffs.
T
?Generalformula:FP=S0X(l+Rf)
7-148
行業(yè)?創(chuàng)新?憎值
?ForwardsArbitrage
>Cash?and?CarryArbitragewithforwardcontractmarketpriceto。high
relativetocarryarbitragemodel.
?IfFP>S0X(1+Rff
AtinitiationAtsettlementdate
?Shortaforwardcontract?Delivertheunderlyingtothelong
?BorrowSoattherisk-free?GetFPfromthelong
rate?Repaytheloanamountof
?UsethemoneytobuytheSoX(l+Rf)T
underlyingbond
Profit=FP-S0X(l+Rf)T
8-148
專業(yè)?創(chuàng)新?憎值
?ForwardsArbitrage
>ReverseCasivsnd-CarryArbitragewithforwardcontractmarketpriceto。
lowrelativetocarryarbitragemodel.
?IfFP<S0X(l+Rff
AtinitiationAtsettlementdate
?Longaforwardcontract?PaytheshortFPtogetthe
underlyingbond
?Shortselltheunderlying
?Closeouttheshortpositionby
bondtogetSodeliveringthebond
?InvestSoattherisk-freerate?Receiveinvestmentproceeds
S0X(URf)T
Profit=S°X(l+Rf)「FP
9-148
專業(yè)?創(chuàng)新?憎值
?GenericPricing:No-ArbitragePrinciple
>Pricingaforwardcontractistheprocessofdeterminingtheno-arbitrage
pricethatwillmakethevalueofthecontractbezerotobothsidesatthe
initiationofthecontract.
?Forwardprice=pricethatwouldnotpermitprofitablerisklessarbitrage
infrictionlessmarkets
?)
FP=Sox(l+rfT+CarryingCosts-CarryingBenefits
>Va山ationofaforwardcontractmeansdeterminingthevalueofthe
contracttothelong(ortheshort)atsometimeduringthelifeofthe
contract.
10-148
行業(yè)?創(chuàng)新?憎值
Forwardcontractvalue
T-bill(zero-couponbond)forwards
?buyaT-billtodayatthespotprice(So)andshortaT-monthT-bill
forwardcontractattheforwardprice(FP);
-x(l趣.
理)------
?Forwardvalueoflongpositionatinitiation(t=0)zduringthecontract
life(t=t)zandatexpiration(t=T).
TimeForwardContractValuation
Zero,becausethecontractispricedtoprevent
t=0arbitrage
t=t
芟(1+
B、理一淺
或
t=T明
11-148
專業(yè)?創(chuàng)新?憎值
?EquityForwardContracts
>Forwardcontractsonadividend-payingstock
?Price:理瑕=6母一瑞fl演)x(爭(zhēng)羊
百)./
?Value:品在斫冕-啜真>(1+7—
袋■糧更).桂
「到/圜釗、函慧型一。卷)
圖=伙,M哦矍一0可)用吟¥1、一一技
=+晉q
12-148
行業(yè)?創(chuàng)新?憎值
?Example
圜>Assumingaforwardcontractwith100daysuntilmaturityonastock,
thestockpriceis$45andexpectedtopaydividendof$0.3in20days,
and$0.5in75days.Theriskfreerateis4%.Calculatetheno-arbitrage
forwardprice.
>CorrectAnswer:
So=$45
Di=$0.3D2=$0.5FP=?
I▲IAk
02075100days
$0.3,$0.5
10420/365+10475/365$0.795343
旬果=($45-$0,795343)x1.O4100/365=$44,68
13-148
行業(yè)?創(chuàng)新?憎值
?Example
圜>After40days,thestockpricechangedto$48.Calculatethevaluationof
theforwardcontract.
>CorrectAnswer:
?There'sonlyonedividendremaining(in35days)beforethe
contractmatures(in60days)asshownbelow;so:
So=$45Di=$0,3S40二$48D=$0.5FP=$44.68
I2
2040y75100days
35daysJ
x,_60days
—o
$0.5
]0435/365=$0.498123
契40$44.68
田。(碧衽哥強(qiáng)吾衽莖=($48—]0460/365=$3,11
$0.498123)-
14-148
行業(yè)?創(chuàng)新?憎值
?Example
>Onemonthago,Todpurchasedaforwardcontractwiththreemonths
toexpirationataquotedpriceof100.20(quotedasaper100par
Bvalue).Thecontractnotionalamountis¥100,000,000.Thecurrent
forwardpriceis100.05.Theriskfreerateis0.3%.Thevalueofthe
positionisclosestto:
A.-¥149,925.
B.-¥150,000.
C.-¥150,075.
“CorrectAnswer:A.最新資料領(lǐng)取微信xuebajun888s
?ThevalueofTod'sforwardpositioniscalculatedas
馥翌=母葭到名(一)]
咫碧
黑(里專100.05-100^0(/1+產(chǎn)12=-0.149925(吾強(qiáng)蕓100年利表
0.0030普器理法很)
?Therefore,thevalueoftheTod'sforwardpositionis
r「0.149925
留《毛—(¥100,000,000)=-¥149,925
15-148
專業(yè)?創(chuàng)新?憎值
?EquityIndexForwardContracts
>Forwardcontractsonanequityindex
c-In1+Kf
?Continuouslycompoundedrisk-freerate:Rf^^
?Continuouslycompoundeddividendyield:6C
?Price:即裝=圖0避
?Value:誓鏟(jpM)一(點(diǎn)心)
16-148
行業(yè)?創(chuàng)新?憎值
?Example
圜>AssumingaforwardcontractontheDowJonesIndexwith100days.
Currently,thevalueofDowJonesIndexis21,000andthecontinuous
dividendyieldis2%.Thecontinuouslycompoundedriskfreerateis
3.2%.Calculatetheno-arbitragepriceoftheforwardcontract.
)
FP=21,000X^(0.032-0.02)x(100/365=21069.1547
>After75days,thevalueofDowJonesIndexis20,050.Keeptherisk
freerateanddividendyieldsameasbefore.Calculatethevaluationof
theforwardcontract.
20,05021,069.1547
Vr(longposition)=------強(qiáng)?亡-一~強(qiáng)c=-1,000.481
7畜0.02x(25/365)<10.032x(25/365)
17-148
行業(yè)?創(chuàng)新?憎值
?ForwardContractsonCouponBonds
>Couponbonds
?Similartodividend-payingstocks,butthecashflowsarecoupons
?Price:利果=金一福留裸)x@嗎
+?)
?Value:矗衽鏟(春演一7TTT--------
艱氯等】鞅技)一%決)蛋.我
用段胤豆干敢割罡嚏)汜Z田
留的理]
18-148
行業(yè)?創(chuàng)新?憎值
?Example
圜>Assumingaforwardcontractwith150daysonaUStreasurybill.The
UStreasurybillhasa5%couponrate,thepriceis$1,100andwillmake
couponpaymentin90days.Theriskfreerateis4%.Calculatethe
forwardprice.
>CorrectAnswer:
”$1000x0.05
段=-----z--------=$25
—】$25.00
營利段01.049。/365=$2生7594
?Theforwardpriceofthecontractistherefore:
旬累(onaincuniesecurity)=($1,100—S24.7594)x
1.04150/365=1,092.7122.
19-148
行業(yè)?創(chuàng)新?憎值
?CurrencyForwardContracts
Price:coveredInterestRateParity(IRP)
一](1+雪奧)
理歆=若。(1+-2沼
x
FPandSoarequotedincurrencyDperunitofcurrencyF(i.e.fD/F)
Value:
斗.
己1-
(1+整金尸-丁一^:
用決)-一
Ifyouaregiventhecontinuousinterestrates
20-148
行業(yè)?創(chuàng)新?憎值
?Example
圜>Considerthefollowing:TheU.S.risk-freerateis6percent,theSwiss
risk-freerateis4percent,andthespotexchangeratebetweenthe
UnitedStatesandSwitzerlandis$0.6667.
?CalculatethecontinuouslycompoundedU.S.andSwissrisk-free
rates;
?Calculatethepriceatwhichyoucouldenterintoaforwardcontract
thatexpiresin90days;
?Calculatethevalueoftheforwardposition25daysintothe
contract.Assumethatthespotrateis$0.65.
21-148
行業(yè)?創(chuàng)新?憎值
?CurrencyForwardContracts
>CorrectAnswer:
1.rCHF=ln(1.04)=0.0392;r$=ln(1.06)=0.0583
2
.閱玨g.666腔各9爆曬392("U/36b))⑶o.o583(W/36b))=
$0.6698
3.St=$0.65;T=90/365;t=25/365;T-t=65/365
Thevalueofthecontractis-$0.0174perSwissfranc
第t(0,T)=($0.65x毀一。。392(65/365))_($06698x
程-0.0583(6勺/365))
=-$0.0174
22-148
行業(yè)?創(chuàng)新?憎值
?ForwardRateAgreements(FRAs)
>AForwardRateAgreement(FRA)isaforwardcontractonaninterest
rate(LIBOR).
■Thelongpositioncanbeviewedastherightandtheobligationto
borrowattheforwardrateiathefuture;
?Theshortpositioncanbeviewedastherightandtheobligationtolend
attheforwardrateinthefuture;
?Noloanisactuallymade,andFRAsarealwayssettledincashatcontract
expiration.
>Let'stakea1X4FRAforexample.A1X4FRAis
?aforwardcontractexpiresin1month,
?andtheunderlyingloanissettledin4months,
?witha3-monthnotionalloanperiod.
?Theunderlyinginterestrateis90-dayLIBORin30daysfromnow.
23-148
行業(yè)?創(chuàng)新?憎值
?ForwardRateAgreements(FRAs)
>LIBOR(LondonInterbankOfferedRate):Collectivenameformultiple
ratesatwhichaselectsetofbanksbelievetheycouldborrowunsecured
fundsfromotherbneksintheLondoninterbankmarketfordifferent
currenciesanddifferentborrowingperiodsrangingfromovernighttoone
year.
?anannualizedratebasedona360-dayyear
?anadd-onrate
?thereferencerateformanyfloating-ratebonds
?USDinterestrate
?publisheddailybytheBritishBanker'sAssociation
>Euribor(EuropeInterbankOfferedRate):establishedinFrankfurt,and
publishedbyEuropeanCentralBank.
24-148
行業(yè)?創(chuàng)新?憎值
?ForwardPricingandValuation-FRA
>LIBOR,Euribor,andFRAs(Con't)
Settlement:settleincash,butnoactualloanismadeatthesettlementdate.
?Payoffqualitativeanalysis:
/Ifthereferencerateattheexpirationdateisabovethespecified
contractrate,thelongwillreceivecashpaymentfromtheshort;
/Ifthereferencerateattheexpirationdateisbelowthecontractrate,
theshortwillreceivecashpaymentfromthelong.
?Payoffquantitativeanalysis
days
(Floatingrateatsettlement-forwardrate)
(Notionalprincipal)
1+Floatingrateatsettlement
25-148
行業(yè)?創(chuàng)新?憎值
?Example
圜>In30days,aUKcompanyexpectstomakeabankdepositof
£10,000,000foraperiodof90daysat90-dayLiborset30daysfrom
today.Thecompanyisconcernedaboutapossibledecreaseininterest
rates.Thecompanyentersintoa£10,000,000notionalamount1X4
receive-fixedFRA.TheappropriatediscountrrtcfortheFRAsettlement
cashflowsis0.40%.After30days,90-dayLiborinBritishpoundsis
0.55%.最新資料領(lǐng)取微信xuebajun888s
IftheFRAwasinitiallypricedat0.60%,thepaymentreceivedtosettleit
willbeclosestto:
A.-£2,448.75.
B.£1,248.75.
C.£1,250.00.
26-148
行業(yè)?創(chuàng)新?憎值
?Example
昌j>CorrectAnswer:B.
?Thesettlementamountofthe1X4FRAathforreceive-fixedis
?NA{[FRA(0hm)-Lh(m)]tm}/[1+Dh(m)tm]
二[10,000,000(0.0060-0.0055)(0.25)]/[l+0.0040(0.25)]
=£1,248.75.
?BecausetheFRAinvolvespayingfloating,itsvaluebenefitedfroma
declineinrates.
27-148
行業(yè)?創(chuàng)新?憎值
?FRAPricing
>TheforwardpriceinanFRAistheno-arbitrageforwardrate(FR)
?Ifspotratesareknown,TheFRisjusttheunbiasedestimateofthe
forwardinterestrate:
-------?L(m)/m-------1-------?FR/n------
--------------?L(m+n)/m+n?----------------
(1+堂理x鎏/360)(1+理mx噂/360)=(1+琛加嗯x(翌+
善)/360)
28-148
行業(yè)?創(chuàng)新?憎值
?Example
>Calculatethepriceofa1X4FRA.Thecurrent30-dayLIBORis3%and
120-dayLIBORis3.9%.
>CorrectAnswer:
(1+3%x30/360)[1+FRAox(120-30)/360]=(1+3.9%x120/360)
?TheannualizedforwardrateisFRAo=4.2%.
29-148
行業(yè)?創(chuàng)新?憎值
?Example
圜>Supposeweenteredareceive-floating6X9FRAatarateof0.86%,
withnotionalamountofC$10,000,000atTime0.Thesix-monthspot
Canadiandollar(C$)Liborwas0.628%,andthenine-monthC$Libor
was0.712%.After90dayshavepassed,thethree-monthC$Liboris
1.25%andthesix-monthC$Liboris1.35%.
AssumingtheappropriatediscountrateisC$Libor,thevalueofthe
originalreceive-floating6X9FRAwillbeclosestto:
A,C$14,125.
B.C$14,350.
C.C$14,651.
30-148
行業(yè)?創(chuàng)新?憎值
?Example
>CorrectAnswer:C.
?First,calculatethequotedFRAatt=90
(1+1.25%x90/360)[1+FRA90x(180-90)/3601(1+1.35%x180/360)
/TheannualizedforwardrateisFRA90=1.4455%.
?Second,calculatethevalueofFRAatt=90
ViOng=10z000z000[(0.014455-0.0086)(90/360)]/[l+0.0135(180/360)]
=14,539.35
31-148
行業(yè)?創(chuàng)新?憎值
1.Forward
■PrincipleofArbitrage-freePricing
Framework■EquityForwardandFuturesContracts
■InterestRateForwardandFutures
Contracts(FRA)
■Fixed-IncomeForwardandFuturesContracts
■CurrencyForwardContracts
2.T-bondFutures
3.Swap
■InterestRateSwapContracts
■CurrencySwapContracts
■EquitySw叩Contracts
32-148
專業(yè)?創(chuàng)新?憎值
FuturesContractValue
Thevalueofafuturescontractiszeroatcontractinception.
Futurescontractsaremarkedtomarketdaily,thevaluejustaftermarking
tomarketisresettozero.
Betweenthetimesatwhichthecontractismarkedtomarket,thevaluecan
becHfferentfromzero.
?V(long)=currentfuturesprice-futurespriceatthelastmark-to-
markettime.
Anotherviewoffutures:settlepreviousfutures,andthenopenanother
newfutureswithsamedateofmaturity.
33-148
行業(yè)?創(chuàng)新?憎值
T-bondFuturesContracts
Underlying:Hypothetical30yeartreasurybondwith6%couponrate.
Bondcanbedeliverable:$100,000parvalueT-bondswithanycouponbut
withamaturityofatleast15years.
Thequotesareinpointsand32nds:Apricequoteof95-18isequalto
95.5625andadollarquoteof$95,562.50.
Theshorthasadeliveryoptiontochoosewhichbondtodeliver.Eachbond
isgivenaconversionfactor(CF),whichmeansaspecificbondis
equivalenttoCFstandardbondunderlyinginfuturescontract.
?ForaspecificBondA:
現(xiàn)毀標(biāo)準(zhǔn)=即數(shù)咽£—
X歆噌
Theshortdesignateswhichbondhewilldriver(cheapest-to-deliverbond).
34-148
行業(yè)?創(chuàng)新?憎值
?ArbitragefromT-Bondfutures
>TherearemethodstobuytheunderlyingbondA
?BuybondAthroughT-bondfutures
/Theadjustedpriceofthefuturescontractisequaltotheconversion
factormultipliedbythequotedfuturesprice:
理零理=即歌根sx?現(xiàn)
/AddingtheaccruedinterestofAhatexpiration,theadjustedprice
ofthefuturescontractgivesatotalpriceof:
第1=現(xiàn)嗷標(biāo)準(zhǔn)x型現(xiàn)理+
制理理
?Buybondthroughholdingthebondatthebeginningoftheperiod
/theno-arbitragefuturespriceatexpirationisequaltothefollowing:
組-$京22檔)“(1也建)—
>Theavailablearbitrage而扁1is補(bǔ)金presentvalueofthisdifference
噌裝型i技裝/勇哥旁晴笠迎i卷|
=致留型2—留
35-148
行業(yè)?創(chuàng)新?憎值
?Example-Arbitrage
>Troubadouridentifiesanarbitrageopportunityrelatingtoafixed-
圜incomefuturescontractanditsunderlyingbond.Currentdataonthe
futurescontractandunderlyingbondarepresentedinExhibit.The
currentannualcompoundedrisk-freerateis0.30%.
Exhibit1CurrentDataforFuturesandUnderlyingBond
FuturesContractUnderlyingBond
Quotedfuturesprice125.00Quotedbondprice112.00
Conversionfactor0.90Accruedinterestsincelastcoupon0.08
payment
TimeremainingtocontractexpirationThreeAccruedinterestatfuturescontract0.20
monthsexpiration
Accruedinterestoverlifeoffutures0.00
contract
BasedonExhibitandassumingannualcompounding,thearbitrage
profitonthebondfuturescontractisclosestto:
A.0.4158.
B.0.5356.
C.0.6195.
36-148
行業(yè)?創(chuàng)新?憎值
?Example
圜>CorrectAnswer:B.
Therearemethodstobuytheunderlyingbond:
?BuybondthroughT-bondfutures
/Theadjustedpriceofthefuturescontractisequaltothe
conversionfactormultipliedbythequotedfuturesprice:
F0(T)=CF(T)QF0(T)=(0.90)(125)=112.50
/Addingtheaccruedinterestof0.20atexpiration,theadjusted
priceofthefuturescontractgivesatotalpriceof112.70.
?Buybondthroughholdingthebondatthebeginningoftheperiod
/theno-arbitragefuturespriceatexpirationisequaltothe
following:用(矍=他制)]聿明+■虱目
=(1(112.00+0.08-0)=112.1640
?Theavailablearbitrageprofitisthepresentvalueofthis
difference:(112.70-112.1640)/(1.003)0.25=0.5356.
37-148
行業(yè)?創(chuàng)新?憎值
?Quotedfuturespriceandforwardprice
>Thequotedfuturespriceisadjustedwithconversionfactor
現(xiàn)利果招歆=(=+嘲^x(i^)—理者-]。
學(xué)朝母祖思黑刑者救X之
38-148
行業(yè)?創(chuàng)新?憎值
?Example
圜>Euro-bondfutureshaveacontractvalueof€100,000,andthe
underlyingconsistsoflong-termGermandebtinstrumentswith8.5to
10.5yearstomaturity.TheyaretradedontheEurex.Supposethe
underlying2%Germanbondisquotedat€108andhasaccrued
interestof€0.083(one-halfofamonthsincelastcouponwhichpays
annually).Theeuro-bondfuturescontractmaturesinonemonth.At
contractexpiration,theunderlyingbondwillhaveaccruedinterestof
€0.25,therearenocouponpaymentsdueuntilafterthefutures
contractexpires,andthecurrentone-monthrisk-freerateis0.1%,The
conversionfactoris0.729535.Theequilibriumeuro-bondfuturesprice
basedonthecarryarbitragemodelwillbeclosestto:
A.€147.57.
B.€147.82.
C.€148.15.
39-148
行業(yè)?創(chuàng)新?憎值
?Example
>CorrectAnswer:B.
Inthiscase,wehaveT=1/12,CF(T)=0.729535,B0(T+Y)=108z
FVCI0J=0,AI0=0.5(2/12)=€0.083,AIT=1.5(2/12)=0.25,r=0.1%.
QF0(T)=[1/CF(T)]{FVOJ[BO(T+Y
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 44808.2-2024人類工效學(xué)無障礙設(shè)計(jì)第2部分:考慮顏色視覺隨年齡變化的顏色組合方法
- Ginisortamab-Mouse-IgG1-生命科學(xué)試劑-MCE-5731
- CDDP-PEG-Cy3-生命科學(xué)試劑-MCE-6481
- 20-Hydroxylucidenic-acid-E2-生命科學(xué)試劑-MCE-8519
- 2-Dodecylfuran-生命科學(xué)試劑-MCE-5142
- 二零二五年度綠色建筑物業(yè)費(fèi)減免執(zhí)行合同
- 二零二五年度校園教師聘用與管理合作協(xié)議
- 二零二五年度股權(quán)贈(zèng)與合同:公司股東權(quán)益轉(zhuǎn)移與公司股權(quán)結(jié)構(gòu)調(diào)整
- 2025年度籃球運(yùn)動(dòng)員與俱樂部傷病賠償合同
- 2025年度影視基地裝修半包工程合同
- 四川省自貢市2024-2025學(xué)年上學(xué)期八年級(jí)英語期末試題(含答案無聽力音頻及原文)
- 2025-2030年中國汽車防滑鏈行業(yè)競(jìng)爭(zhēng)格局展望及投資策略分析報(bào)告新版
- 2025年上海用人單位勞動(dòng)合同(4篇)
- 二年級(jí)上冊(cè)口算題3000道-打印版讓孩子口算無憂
- 新疆烏魯木齊地區(qū)2025年高三年級(jí)第一次質(zhì)量監(jiān)測(cè)生物學(xué)試卷(含答案)
- 衛(wèi)生服務(wù)個(gè)人基本信息表
- 高中英語北師大版必修第一冊(cè)全冊(cè)單詞表(按單元編排)
- 新教科版科學(xué)小學(xué)四年級(jí)下冊(cè)全冊(cè)教案
- 苗圃建設(shè)項(xiàng)目施工組織設(shè)計(jì)范本
- 廣東省湛江市廉江市2023-2024學(xué)年八年級(jí)上學(xué)期期末考試數(shù)學(xué)試卷(含答案)
- 學(xué)校食品安全舉報(bào)投訴處理制度
評(píng)論
0/150
提交評(píng)論