2025屆遼寧省大連市第十六中學(xué)高考數(shù)學(xué)三模試卷含解析_第1頁
2025屆遼寧省大連市第十六中學(xué)高考數(shù)學(xué)三模試卷含解析_第2頁
2025屆遼寧省大連市第十六中學(xué)高考數(shù)學(xué)三模試卷含解析_第3頁
2025屆遼寧省大連市第十六中學(xué)高考數(shù)學(xué)三模試卷含解析_第4頁
2025屆遼寧省大連市第十六中學(xué)高考數(shù)學(xué)三模試卷含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2025屆遼寧省大連市第十六中學(xué)高考數(shù)學(xué)三模試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知集合,,則()A. B.C. D.2.已知集合,,若,則()A.或 B.或 C.或 D.或3.已知復(fù)數(shù)z滿足i?z=2+i,則z的共軛復(fù)數(shù)是()A.﹣1﹣2i B.﹣1+2i C.1﹣2i D.1+2i4.已知角的終邊經(jīng)過點(diǎn)P(),則sin()=A. B. C. D.5.已知雙曲線的一條漸近線與直線垂直,則雙曲線的離心率等于()A. B. C. D.6.已知向量,,且與的夾角為,則x=()A.-2 B.2 C.1 D.-17.已知,且,則在方向上的投影為()A. B. C. D.8.函數(shù)與的圖象上存在關(guān)于直線對稱的點(diǎn),則的取值范圍是()A. B. C. D.9.已知函數(shù),,若方程恰有三個不相等的實(shí)根,則的取值范圍為()A. B.C. D.10.已知條件,條件直線與直線平行,則是的()A.充要條件 B.必要不充分條件 C.充分不必要條件 D.既不充分也不必要條件11.函數(shù)在上的大致圖象是()A. B.C. D.12.為了得到函數(shù)的圖象,只需把函數(shù)的圖象上所有的點(diǎn)()A.向左平移個單位長度 B.向右平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度二、填空題:本題共4小題,每小題5分,共20分。13.四面體中,底面,,,則四面體的外接球的表面積為______14.已知,則__________.15.定義在R上的函數(shù)滿足:①對任意的,都有;②當(dāng)時,,則函數(shù)的解析式可以是______________.16.在的展開式中,常數(shù)項為________.(用數(shù)字作答)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,平面ABCD平面PAD,,,,,E是PD的中點(diǎn).證明:;設(shè),點(diǎn)M在線段PC上且異面直線BM與CE所成角的余弦值為,求二面角的余弦值.18.(12分)已知數(shù)列和,前項和為,且,是各項均為正數(shù)的等比數(shù)列,且,.(1)求數(shù)列和的通項公式;(2)求數(shù)列的前項和.19.(12分)[選修4-5:不等式選講]:已知函數(shù).(1)當(dāng)時,求不等式的解集;(2)設(shè),,且的最小值為.若,求的最小值.20.(12分)在角中,角A、B、C的對邊分別是a、b、c,若.(1)求角A;(2)若的面積為,求的周長.21.(12分)在四棱錐中,底面為直角梯形,,面.(1)在線段上是否存在點(diǎn),使面,說明理由;(2)求二面角的余弦值.22.(10分)已知函數(shù).(1)討論的單調(diào)性并指出相應(yīng)單調(diào)區(qū)間;(2)若,設(shè)是函數(shù)的兩個極值點(diǎn),若,且恒成立,求實(shí)數(shù)k的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

求出集合,計算出和,即可得出結(jié)論.【詳解】,,,.故選:C.【點(diǎn)睛】本題考查交集和并集的計算,考查計算能力,屬于基礎(chǔ)題.2、B【解析】

因為,所以,所以或.若,則,滿足.若,解得或.若,則,滿足.若,顯然不成立,綜上或,選B.3、D【解析】

兩邊同乘-i,化簡即可得出答案.【詳解】i?z=2+i兩邊同乘-i得z=1-2i,共軛復(fù)數(shù)為1+2i,選D.【點(diǎn)睛】的共軛復(fù)數(shù)為4、A【解析】

由題意可得三角函數(shù)的定義可知:,,則:本題選擇A選項.5、B【解析】由于直線的斜率k,所以一條漸近線的斜率為,即,所以,選B.6、B【解析】

由題意,代入解方程即可得解.【詳解】由題意,所以,且,解得.故選:B.【點(diǎn)睛】本題考查了利用向量的數(shù)量積求向量的夾角,屬于基礎(chǔ)題.7、C【解析】

由向量垂直的向量表示求出,再由投影的定義計算.【詳解】由可得,因為,所以.故在方向上的投影為.故選:C.【點(diǎn)睛】本題考查向量的數(shù)量積與投影.掌握向量垂直與數(shù)量積的關(guān)系是解題關(guān)鍵.8、C【解析】

由題可知,曲線與有公共點(diǎn),即方程有解,可得有解,令,則,對分類討論,得出時,取得極大值,也即為最大值,進(jìn)而得出結(jié)論.【詳解】解:由題可知,曲線與有公共點(diǎn),即方程有解,即有解,令,則,則當(dāng)時,;當(dāng)時,,故時,取得極大值,也即為最大值,當(dāng)趨近于時,趨近于,所以滿足條件.故選:C.【點(diǎn)睛】本題主要考查利用導(dǎo)數(shù)研究函數(shù)性質(zhì)的基本方法,考查化歸與轉(zhuǎn)化等數(shù)學(xué)思想,考查抽象概括、運(yùn)算求解等數(shù)學(xué)能力,屬于難題.9、B【解析】

由題意可將方程轉(zhuǎn)化為,令,,進(jìn)而將方程轉(zhuǎn)化為,即或,再利用的單調(diào)性與最值即可得到結(jié)論.【詳解】由題意知方程在上恰有三個不相等的實(shí)根,即,①.因為,①式兩邊同除以,得.所以方程有三個不等的正實(shí)根.記,,則上述方程轉(zhuǎn)化為.即,所以或.因為,當(dāng)時,,所以在,上單調(diào)遞增,且時,.當(dāng)時,,在上單調(diào)遞減,且時,.所以當(dāng)時,取最大值,當(dāng),有一根.所以恰有兩個不相等的實(shí)根,所以.故選:B.【點(diǎn)睛】本題考查了函數(shù)與方程的關(guān)系,考查函數(shù)的單調(diào)性與最值,轉(zhuǎn)化的數(shù)學(xué)思想,屬于中檔題.10、C【解析】

先根據(jù)直線與直線平行確定的值,進(jìn)而即可確定結(jié)果.【詳解】因為直線與直線平行,所以,解得或;即或;所以由能推出;不能推出;即是的充分不必要條件.故選C【點(diǎn)睛】本題主要考查充分條件和必要條件的判定,熟記概念即可,屬于基礎(chǔ)題型.11、D【解析】

討論的取值范圍,然后對函數(shù)進(jìn)行求導(dǎo),利用導(dǎo)數(shù)的幾何意義即可判斷.【詳解】當(dāng)時,,則,所以函數(shù)在上單調(diào)遞增,令,則,根據(jù)三角函數(shù)的性質(zhì),當(dāng)時,,故切線的斜率變小,當(dāng)時,,故切線的斜率變大,可排除A、B;當(dāng)時,,則,所以函數(shù)在上單調(diào)遞增,令,,當(dāng)時,,故切線的斜率變大,當(dāng)時,,故切線的斜率變小,可排除C,故選:D【點(diǎn)睛】本題考查了識別函數(shù)的圖像,考查了導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系以及導(dǎo)數(shù)的幾何意義,屬于中檔題.12、D【解析】

通過變形,通過“左加右減”即可得到答案.【詳解】根據(jù)題意,故只需把函數(shù)的圖象上所有的點(diǎn)向右平移個單位長度可得到函數(shù)的圖象,故答案為D.【點(diǎn)睛】本題主要考查三角函數(shù)的平移變換,難度不大.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由題意畫出圖形,補(bǔ)形為長方體,求其對角線長,可得四面體外接球的半徑,則表面積可求.【詳解】解:如圖,在四面體中,底面,,,可得,補(bǔ)形為長方體,則過一個頂點(diǎn)的三條棱長分別為1,1,,則長方體的對角線長為,則三棱錐的外接球的半徑為1.其表面積為.故答案為:.【點(diǎn)睛】本題考查多面體外接球表面積的求法,補(bǔ)形是關(guān)鍵,屬于中檔題.14、【解析】

首先利用,將其兩邊同時平方,利用同角三角函數(shù)關(guān)系式以及倍角公式得到,從而求得,利用誘導(dǎo)公式求得,得到結(jié)果.【詳解】因為,所以,即,所以,故答案是.【點(diǎn)睛】該題考查的是有關(guān)三角函數(shù)化簡求值問題,涉及到的知識點(diǎn)有同角三角函數(shù)關(guān)系式,倍角公式,誘導(dǎo)公式,屬于簡單題目.15、(或,答案不唯一)【解析】

由可得是奇函數(shù),再由時,可得到滿足條件的奇函數(shù)非常多,屬于開放性試題.【詳解】在中,令,得;令,則,故是奇函數(shù),由時,,知或等,答案不唯一.故答案為:(或,答案不唯一).【點(diǎn)睛】本題考查抽象函數(shù)的性質(zhì),涉及到由表達(dá)式確定函數(shù)奇偶性,是一道開放性的題,難度不大.16、【解析】

的展開式的通項為,取計算得到答案.【詳解】的展開式的通項為:,取得到常數(shù)項.故答案為:.【點(diǎn)睛】本題考查了二項式定理,意在考查學(xué)生的計算能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解析】

(1)由平面平面的性質(zhì)定理得平面,.在中,由勾股定理得,平面,即可得;(2)以為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,由空間向量法和異面直線與所成角的余弦值為,得點(diǎn)M的坐標(biāo),從而求出二面角的余弦值.【詳解】(1)平面平面,平面平面=,,所以.由面面垂直的性質(zhì)定理得平面,,在中,,,由正弦定理可得:,,即,平面,.(2)以為坐標(biāo)原點(diǎn)建立如圖所示的空間直角坐標(biāo)系,則,,,設(shè),則,,得,,而,設(shè)平面的法向量為,由可得:,令,則,取平面的法向量,則,故二面角的余弦值為.【點(diǎn)睛】本題考查了線線垂直的證明,考查二面角的余弦值的求法,解題時要注意空間思維能力的培養(yǎng)和向量法的合理運(yùn)用,屬于中檔題.18、(1),;(2).【解析】

(1)令求出的值,然后由,得出,然后檢驗是否符合在時的表達(dá)式,即可得出數(shù)列的通項公式,并設(shè)數(shù)列的公比為,根據(jù)題意列出和的方程組,解出這兩個量,然后利用等比數(shù)列的通項公式可求出;(2)求出數(shù)列的前項和,然后利用分組求和法可求出.【詳解】(1)當(dāng)時,,當(dāng)時,.也適合上式,所以,.設(shè)數(shù)列的公比為,則,由,兩式相除得,,解得,,;(2)設(shè)數(shù)列的前項和為,則,.【點(diǎn)睛】本題考查利用求,同時也考查了等比數(shù)列通項的計算,以及分組求和法的應(yīng)用,考查計算能力,屬于中等題.19、(1)(2)【解析】

(1)當(dāng)時,,原不等式可化為,分類討論即可求得不等式的解集;(2)由題意得,的最小值為,所以,由,得,利用基本不等式即可求解其最小值.【詳解】(1)當(dāng)時,,原不等式可化為,①當(dāng)時,不等式①可化為,解得,此時;當(dāng)時,不等式①可化為,解得,此時;當(dāng)時,不等式①可化為,解得,此時,綜上,原不等式的解集為.(2)由題意得,,因為的最小值為,所以,由,得,所以,當(dāng)且僅當(dāng),即,時,的最小值為.【點(diǎn)睛】本題主要考查了絕對值不等式問題,對于含絕對值不等式的解法有兩個基本方法,一是運(yùn)用零點(diǎn)分區(qū)間討論,二是利用絕對值的幾何意義求解.法一是運(yùn)用分類討論思想,法二是運(yùn)用數(shù)形結(jié)合思想,將絕對值不等式與函數(shù)以及不等式恒成立交匯、滲透,解題時強(qiáng)化函數(shù)、數(shù)形結(jié)合與轉(zhuǎn)化化歸思想方法的靈活應(yīng)用,這是命題的新動向.20、(1);(2)1.【解析】

(1)由正弦定理化簡已知等式可得sinAsinB=sinBcosA,求得tanA=,結(jié)合范圍A∈(0,π),可求A=.(2)利用三角形的面積公式可求bc=8,由余弦定理解得b+c=7,即可得解△ABC的周長的值.【詳解】(1)由題意,在中,因為,由正弦定理,可得sinAsinB=sinBcosA,又因為,可得sinB≠0,所以sinA=cosA,即:tanA=,因為A∈(0,π),所以A=;(2)由(1)可知A=,且a=5,又由△ABC的面積2=bcsinA=bc,解得bc=8,由余弦定理a2=b2+c2-2bccosA,可得:25=b2+c2-bc=(b+c)2-3bc=(b+c)2-24,整理得(b+c)2=49,解得:b+c=7,所以△ABC的周長a+b+c=5+7=1.【點(diǎn)睛】本題主要考查了正弦定理,三角形的面積公式,余弦定理在解三角形中的綜合應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.21、(1)存在;詳見解析(2)【解析】

(1)利用面面平行的性質(zhì)定理可得,為上靠近點(diǎn)的三等分點(diǎn),中點(diǎn),證明平面平面即得;(2)過作交于,可得兩兩垂直,以分別為軸建立空間直角坐標(biāo)系,求出長,寫出各點(diǎn)坐標(biāo),用向量法求二面角.【詳解】解:(1)當(dāng)為上靠近點(diǎn)的三等分點(diǎn)時,滿足面.證明如下,取中點(diǎn),連結(jié).即易得所以面面,即面.(2)過作交于面,兩兩垂直,以分別為軸建立空間直角坐標(biāo)系,如圖,設(shè)面法向量,則,即取同理可得面的法向量綜上可知銳二面角的余弦值為.【點(diǎn)睛】本題考查立體幾何中的存探索性命題,考查用空間向量法求二面角.線面平行問題可通過面面平行解決,一定要掌握:立體幾何中線線平行、線面平行、面面平行是相互轉(zhuǎn)化、相互依存的.求空間角一般是建立空間直角坐標(biāo)系,用空間向量法求空間角.22、(1)答案見解析(2)【解析】

(1)先對函數(shù)進(jìn)行求導(dǎo)得,對分成和兩種情況討論,從而得到相應(yīng)的單調(diào)區(qū)間;(2)對函數(shù)求導(dǎo)得,從而有,,,三個方程中利用得到.將

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論